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This thesis describes YARF (Yet Another Road Follower), a vision-based system for autonomous road
following. Video data from a camera mounted on a robot vehicle is fed into a computer, which analyzes
the image data to locate the position of the vehicle relative to the road. The computer then issues
commands to actuators attached to the throttle, brakes, and steering in order to drive the vehicle along the
mad. YARF has been extensively tested using a combination of open- and closed-loop runs on testbed
vehicles, simulation, and data from videotapes. YARF provides a set of perception capabilities to locate
the position of the vehicle relative to the road, to detect changes in the lane structure of the road, to
navigate through intersections given a model of the intersection geometry, and to extract the lane structure
of the road without a prior model.

The central theme of YARF is that using richer models improves road following performance. Models of
geometric structure, of road appearance, and of segmentation performance all simplify processing and
contribute to improve reliability. YARF uses road models in several ways:

* Model drive segmentation.

9 Exploitation of model coherence to avoid the influence of contaminating data.

9 Data driven recognition of model changes.

While YARF assumes that the models of road structure used are generated off line, the thesis also
presents an algorithm designed to automatically extract much of the needed model information. The
algorithm uses a weak domain model to filter a noisy image segmentation, extracting both feature
geometry and type.

Keywords: visIoN AND SCENE UNDERsTANDING, ROBOTICS. SEGMENTATION. SCENE ANALYSIS. L•MAGE

REPRESENTATION

(95 pages)

TECHNICAL REPORT 1993 COMPLI SCIENCE CARNEGIE MELLON



TECHNICAL REPORTS 1993 - NEW ADDITIONS

School of Computer Science

CMU-CS-93-104 YARF: AN OPEN-ENDED FRAMEWORK FOR ROBOT ROAD FOLLOWING
Karl Kluge
February 1993
KEYWORDS: Vision and scene understanding, robotics, segmentation, scene
analysis, image representation

CMU-CS-93-115 CLASS NOTES: PROGRAMMING PARALLEL ALGORITHMS
CS 1.S40B (FALL 1992)
Guy E. Blelloch, Jonathan C. Hardwick
February 1993
KEYWORDS: Parallel algorithms,*parallel machine models, NESL

CMU-CS-93-122 WHAT IS THE CENTER OF THE IMAGE?
Reg G. Willson, Steven A. Shafer
April 1993
KEYWORDS: Image center, camera calibration, automated zoom lens, computer
vision, Calibrated Imaging Laboratory

CMU-CS-93-128 MOBILE HOST INTERNETWORKING USING IP LOOSE SOURCE ROUTING
David B. Johnson
February 1993
KEYWORDS: Mobile computing, internetworking, mobile hosts, mobile EP,
network protocols, routing

CMU-CS-93-129 1  NESL: A NESTED DATA-PARALLEL LANGUAGE (VERSION 2.6)
Guy E. Blelloch
April 1993
KEYWORDS: Data-parallel, parallel algorithms, supercomputers, nested
parallelism, PRAM model, parallel programming languages, collection-oriented
languages

CMU-CS-93-130 SOLVING INTEGER PROGRAMS FROM DEPENDENCE AND SYNCHRONIZATION
PROBLEMS

Jaspal Subhlok
March 1993
KEYWORDS: Exact dependence testing, integer programming, parallelizing
compilers, parallel program -analysis, synchronization analysis

CMU-CS-93-133 VISUAL REPRESENTATIONS AS FEEDBACK IN A PROGRAMMABLE VISUAL
SHELL
Francesmary Modugno, Brad A. Myers
March 1993
KEYWORDS: User interfaces, intelligent interfaces, end-user programming,
programming by demonstration, demonstrational systems, visual languages

'Revised version of CMU-CS-92-103, January 1992.

CS TECHNICAL REPORTS 1993 APRIL 1993 CARNEGIE MELLON UNIVERSITY



CMU-CS-93-134 TYPED OUTPUT AND PROGRAMMING IN THE INTERFACE
Francesmary Modugno, Brad A. Myers
March 1993
KEYWORDS: User interfaces, intelligent interfaces, end-user programming,
programming by demonstration, demonstrational systems, interaction techniques

CMU-CS-93-139 PREDICTIG UNSEEN TRIPHONES WrTH SENONES
Mei-Yuh Hwang, Xuedong Huang, Fileno Alleva
April 1993
KEYWORDS: Shared-distribution models, senones, generalized triphones, decision
trees, entropy, cross entropy

CMU-CS-93-141 FULL ABSTRACTION FOR A SHARED VARIABLE PARALLEL LANGUAGE
Stephen Brookes
April 1993
KEYWORDS: Denotational semantics, operational semantics, parallel
programming, partial correctness, safety properties, liveness properties, fairness

CS TECHNICAL REPORTS 1993 2 CARNEGIE MELLON UNIVERSITY



TECHNICAL REPORTS 1993

School of Computer Science

CMU-CS-93-100 UNCERTAINTY IN OBJECT POSE DETERMINATION WITH THREE LIGHT-STRIPE
RANGE MEASUREMENTS
Keiichi Kemmotsu, Takeo Kanade
January 1993
KEYWORDS: Computer vision, object recognition, interpretation tree, geometric
constraints, pose determination, geometric uncertainties

CMU-CS-93-101 A METHODOLOGY AND SOFTWARE ENVIRONMENT FOR TESTING.PROCESS
MODEL'S SEQUENTIAL PREDICTIONS WITH PROTOCOLS
Frank E. Ritter
Thesis (Psychology)
December 1992
KEYWORDS: Spreadsheets, programmer workbench, program editors, tracing,
display algorithms, training, help and documentation, model validation and
analysis, cognitive simulation, relations among models, protocol analysis, Soar

CMU-CS-93-102 EXPERIMENTS IN MULTIPLE-BASELINE STEREO
Tomoharu Nakahara, Takeo Kanade
August 1992
KEYWORDS: Stereo, 3-D vision, range sensing, multi-image fusionS CMU-CS-93-103 REINFORCEMENT LEARNING FOR ROBOTS USING NEURAL NETWORKS
Long-Ji Lin
Thesis
January 1993
KEYWORDS: Machine learning, reinforcement learning, artificial neural network,
mobile robot, control, credit assignment, temporal difference, action model,
teaching, hierarchical learning, abstraction, hidden state

CMU-CS-93-104 YARF: AN OPEN-ENDED FRAMEWORK FOR ROBOT ROAD FOLLOWING
Karl Kluge
February 1993
KEYWORDS: Vision and scene understanding, robotics, segmentation, scene
analysis, image representation

CMU-CS-93-105 NOT AVAILABLE

CMU-CS-93-106 NOT AVAILABLE

CMU-CS-93-107 CRYPTOGRAPHY: IT'S NOT JUST FOR ELECTRONIC MAIL ANYMORE
J. Doug Tygar, Bennet Yee
March 1993
KEYWORDS: Cryptography, franking, electronic currency, mail, postage, stamps,
electronic stamps, secure coprocessors, signatures

CMU-CS-93-108 THE SECOND GARNET COMPENDIUM: COLLECTED PAPERS 1990-1992
Brad A. Myers, editor
February 1993
KEYWORDS: Garnet, user interface development environments, user interface
management systems, toolkits, constraints, interface builders, object-oriented
programming, direct manipulation

CS TECMNCAL REPOR7S I 3 APRIL 13 CAMNGIE MELLON UNIVERSrrY



CMU-CS-93-109 NOT AVAILABLE

CMU-CS-93-110 NOT AVAILABLE

CMU-CS-93-111 APPLYING HIGH-LEVEL LANGUAGE PARADIGMS TO COMMUNICATIONS
SOFTWARE FOR DISTRIBUTED SYSTEMS
Ellen H. Siegel
Thesis
January 1993
KEYWORDS: Distributed systems, communication, high-level programming
languages

CMU.CS.93-112 NOT AVAILABLE

CMU-CS-93-113 NOT AVAILABLE

CMU-CS-93-114 NOT AVAILABLE

CMU-CS-93-115 CLASS NOTES: PROGRAMMING PARALLEL ALGORITHMS
CS 154-401 (FALL 1992)
Guy E. Blelloch, Jonathan C. Hardwick
February 1993
KEYWORDS: Parallel algorithms, parallel machine models, NESL

CMU-CS-93-116 SIGNED VECTOR TIMESTAMPS: A SECURE PROTOCOL FOR PARTIAL ORPER
TIME
Sean W. Smith, J. Doug Tygar
October 1991; version of February 1993
KEYWORDS: Security, cryptographic controls, distributed systems, concurrency

CMU-CS-93-117 NEURAL REPRESENTATION OF SPACE USING SINUSOIDAL ARRAYS
David S. Touretzky, A. David Redish, Hank S. Wan
March 1993
KEYWORDS: Neural modelling, spatial reasoning, parietal cortex, sinusoidal arrays

CMU-CS-93-118 NOT AVAILABLE

CMU-CS-93-119 THE MIDWAY DISTRIBUTED SHARED MEMORY SYSTEM
Brian N. Bershad, Matthew J. Zekauskas, Wayne A. Sawdon
March 1993
KEYWORDS: Distributed shared memory, memory consistency, distributed
systems, parallelism

CMU-CS-93-120 NOT AVAILABLE

CMU-CS.93-121 USING THE MACH COMMUNICATION PRIMITIVES IN Xl1
Michael Ginsberg, Robert V. Baron, Brian N. Bershad
March 1993
KEYWORDS: X 11, performance, IPC, shared memory, window systems

CMU-CS-93-122 WHAT IS THE CENTER OF THE IMAGE?
Reg G. Willson, Steven A. Shafer
April 1993
KEYWORDS: Image center, camera calibration, automated zoom lens, computer
vision, Calibrated Imaging Laboratory

CMU-CS-93-123 NOT AVAILABLE

CMU-CS-93-124 NOT AVAILABLE

CS TECHNICAL REPORTS 199 2 CARNEGIE MELLON UNMVERSITY



CMU-CS-93-125 THE PRIORITY INVERSION PROBLEM AND REAL-TIME SYMBOLIC MODEL
CHECKING
Sergio V. Campos
April 1993
KEYWORDS: Symbolic model checking, real-time systems, priority inversion

CMU-CS-93-126 NOT AVAILABLE

CMU-CS-93-127 NOT AVAILABLE

CMU-CS-93-128 MOBILE HOST INTERNETWORKING USING IP LOOSE SOURCE ROUTING
David B. Johnson
February 1993
KEYWORDS: Mobile computing, internetworking, mobile hosts, mobile IP,
network protocols, routing

CMU-CS-93-129 1  NESL: A NESTED DATA-PARALLEL LANGUAGE (VERSION 2.6)
Guy E. Blelloch
April 1993
KEYWORDS: Data-parallel, parallel algorithms, supercomputers, nested
parallelism, PRAM model, parallel programming languages, collection-oriented
languages

CMU-CS-93-130 SOLVING INTEGER PROGRAMS FROM DEPENDENCE AND SYNCHRONIZATION
PROBLEMS
Jaspal Subhlok
March 1993
KEYWORDS: Exact dependence testing, integer programming, parallelizing
compilers, parallel program analysis, synchronization analysis

CMU-CS-93-131 NOT AVAILABLE
CMU-CS-93-132 NOT AVAILABLE

CMU-CS-93-133 VISUAL REPRESENTATIONS AS FEEDBACK IN A PROGRAMMABLE VISUAL
SHELL

Francesmary Modugno, Brad A. Myers
March 1993
KEYWORDS: User interfaces, intelligent interfaces, end-user programming,
pro,-.mming by demonstration, demonstrational systems, visual languages

CMU-CS-93-134 TYPED OUTPUT AND PROGRAMMING IN THE INTERFACE
Francesmary Modugno, Brad A. Myers
March 1993
KEYWORDS: User interfaces, intelligent interfaces, end-user programming,
programming by demonstration, demonstrational systems, interaction techniques

CMU-CS-93-135 NOT AVAILABLE

CMU-CS-93-136 NOT AVAILABLE

CMU-CS-93-137 NOT AVAILABLE

CMU-CS-93-138 NOT AVAILABLE

1Revised version of CMU-CS-92-103, January 1992.

CS TECHNICAL REPORTS 1993 3 CARNEGIE MELLON UNIVERSITY



CMU-CS-93-139 PREDICTING UNSEEN TRIPHONES WITH SENONES
Mei-Yuh Hwang, Xuedong Huang, Fileno Alieva
April 1993
KEYWORDS: Shand-distribution models, senones, generalized triphones, decision
ames, entropy, cross entropy

CMU-CS-93-140 NOT AVAILABLE

CMU-CS-93-141 FULL ABSTRACTION FOR A SHARED VARIABLE PARALLEL LANGUAGE
Stephen Brookes
April 1993
KEYWORDS: Denotational semantics, operational semantics, parallel
programming, partial correctness, safety properties, liveness properties, fairness

CS TECHNICAL REPORTS 1993 4 CARNEGIE MELLON UNIVERSITY



TECHNICAL REPORTS 1993

School of Computer Science

ALLEVA, Fileno CMU-CS-93-139

BARON, Robert V. CMU-CS-93- 121

£,RSHAD, Brian N. CMU-CS-93-119, CMU-CS-93-121

BLELLOCH, Guy E. CMU-CS-93-115, CMU-CS-93-129

BROOKES, Stephen CMU-CS-93-141

CAMPOS, Sergio V. CMU-CS-93-125

GINSBERG, Michael CMU-CS-93-121

HARDWICK, Jonathan C. CMU-CS-93-115

HUANG, Xuedong CMU-CS-93-139

HWANG, Mei-Yuh CMU-CS-93-139

JOHNSON, David B. CMU-CS-93-128

KANADE, Takeo CMU-CS-93-100, CMU-CS-93-102

KEMMOTSU, Keiichi CMU-CS-93-100

KLUGE, Karl CMU-CS-93-104

LIN, Long-Ji CMU-CS-93-103

MODUGNO, Francesmary CMU-CS-93-133, CMU-CS-93-134

MYERS, Brad A. CMU-CS-93-108. CMU-CS-93-133, CMU-CS-93-134

NAKAHARA, Tonoharu CMU-CS-93-102

REDISH, A. David CMU-CS-93-117

RITTER, Frank E. CMU-CS-93-101

SHAFER, Steven A. CMU-CS-93-122

SAWDON, Wayne A. CMU-CS-93-119

SIEGEL, Ellen H. CMU-CS-93-111

SMITH, Sean W. CMU-CS-93-116

SUBHLOK, Jaspal CMU-CS-93-130

TOURETZKY, David S. CMU-CS-93-117

TYGAR, J. Doug CMU-CS-93-107, CMU-CS-93-116

WAN, Hank S. CMU-CS-93-117

WILLSON, Reg G. CMU-CS-93-122

YEE, Bennet CMU-CS-93- 107

ZEKAUSKAS, Matthew J. CMU-CS-93-119

P
ThCIlhNlCAL REPORTS 1993 APRIL 1993 CARNEGIE MELLON UNIVERSITY



Abstract

Over the last half decade, vision based road following systems have progressed from
programs which could travel tens of meters between failures to programs capable of driving
many kilometers between failures. System performance is typically limited by the following
factors: the reliability of the image segmentation techniques used; the accuracy of the
system's estimate of road shape and location; the robustness of the system's shape
estimation algorithms when faced with data contaminated by bad observations; and the
ability of the system to detect and adapt to changes in road structure and appearance.

The YARF road following system presents novel approaches to improving performance in
each of these areas. YARF is able to simplify the image segmentation problem by
incorporating information about feature appearance as well as feature geometry in the model
of road structure. Estimation of the road shape parameters in a data-dependent coordinate
system produces dramatic increases in the accuracy of road shape estimation. Use of a
robust estimation technique allows YARF to correctly determine the road shape in situations
where a least squares based technique would fail due to contaminating data points. Finally,
YARF includes techniques for detecting changes in road appearance, verifying intersections
or changes in lane structure predicted by a map of the road network, and extracting a model
of the visible lane structure of a road from an image. YARF has been tested on a variety of
road scenes using a mixture of open- and closed-loon test runs on the Navlab vehicles as
well as data collected on videotape and simulations.
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1 Introduction

"Suppose someone arbitrarily proposes to build a gadget having the following
properties: it is to be mounted on an automobile and made to steer the car so that it
will follow a white line on the roadway, to slow the car when the line turns blue,
and perhaps to perform other bizarre functions. No such device will actually be
built, for there is obviously no application that warrants it." ([6], page 72)

When Vannever Bush made that statement in 1949 it is unlikely that he realized the extent to
which the private automobile would become a dominant mode of transportation in the
United States and elsewhere. Just over 80% of the intercity passenger miles travelled in the
U.S. each year are done by private automobile [55]. Over the last decade there has been
increasing interest in developing systems capable of autonomous driving in order to increase
driver comfort and safety and to increase the volume of traffic that can be carried by existing
roadways. Current government projects supporting research into autonomous read
following include the DARPA Unmanned Ground Vehicles project [34], the FHWA
Intelligent Vehicles and Highway Systems project in the United States, and the Eureka
PROMETHEUS project in Europe [24]. Automobile manufacturers such as General Motors
[27], Honda [20], Nissan [21], and Daimler-Benz [17] are also performing research in this
area.

This thesis describes YARF (Yet Another Road Follower), a vision-based system for
autonomous road following. Video data from a camera mounted on a robot vehicle is fed
into a computer, which analyzes the image data to locate the position of the vehicle relative
to the road. The computer then issues commands to actuators attached to the throttle, brakes,
and steering in order to drive the vehicle along the road. YARF has been extensively tested
using a combination of open- and closed-loop runs on testbed vehicles, simulation, and data
from videotapes. YARF provides a set of perception capabilities to locate the position of the
vehicle relative to the road, to detect changes in the lane structure of the road, to navigate
through intersections given a model of the intersection geometry, and to extract the lane
structure of the road without a prior model.

The central theme of YARF is that using richer models improves road following
performance. Models of geometric structure, of road appearance, and of segmentation
performance all simplify processing and contribute to improved reliability. YARF uses road
models in several ways:

* Model driven segmentation. YARF uses model information about feature
appearance to select a detection method from a suite of specialized segmentation
operators. The simple and fast segmentation techniques used take advantage of
model information about feature appearance to robustly detect the presence and
absence of different types of features.

* Exploitation of model coherence to avoid the influence of contaminating data. The
geometric constraints provided by the model are combined with estimation
techniques that are robust in the presence of contaminating data observations. This
combination permits the system to perform correctly in situations which would
cause least squares based approaches to fail.
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Data driven recognition of model changes. Failures of the image segmentation
techniques to see predicted features are used to trigger hypotheses about changes
in road structure. The changes which will occur are assumed known, but the
occurrence of the changes is detected in a data driven fashion.

While YARF assumes that the models of road structure used are generated off line, the thesis
also presents an algorithm designed to automatically extract much of the needed model
information. The algorithm uses a weak domain model to filter a noisy image segmentation,
extracting both feature geometry and type.

While the domain chosen for investigating these issues is vision based road following, the
techniques developed are applicable to other vision based navigation domains. The
characteristics of such domains involve an environment which can be characterized by a
geometric model, and the ability to determine the vehicle position relative to the model
based on point measurements of the locations of features from the model. The architecture
of the YARF system permits easy extension to include additional segmentation or estimation
techniques. The object oriented task decomposition built into the system allows simple
replacement and extension of functional sets of routines such as those which implement the
camera and environment model. Using the system to perform a docking task, for instance,
would involve adding detectors to locate features on the docking target, modifying the
formulation of the estimation problem to be solved from fitting a road model to fitting the
vehicle attitude with respect to the target, and changing the control commands issued. All of
the system support in terms of camera modeling, feature detector management, estimation
routines, etc. would be available for direct application to the new task.

1.1 Why vision-based road following?

One option for autonomous vehicle guidance is a cooperative approach. In such an
approach, active or passive beacons are added to the road infrastructure in order to simplify
the problem of determining the vehicle location relative to the road. An example of this
approach is the lateral control work within the California PATH program [45]. Cheap
ceramic permanent magnets are embedded along the center of the lane at one meter
intervals. Four Hall-effect magnetometers are mounted under the vehicle bumper, and the
field strengths measured by these sensors indicate the lateral offset of the vehicle from the
lane center. Such a technique does not require complex perception algorithms. and uses
relatively mature technology.

The disadvantage of such techniques is that they require modifications to the road
infrastructure. Modifying the entire highway network would take time, and consumers are
unlikely to want to pay for expensive options which are useful only in limited areas. The
infrastructure modifications would cost money. In addition, closing lanes to embed cables or
markers in the pavement would (temporarily) reduce road capacity in the very areas where
capacity is a key concern.

The alternative examined in this work is to take advantage of the existing visual cues used
by humans to perform lateral vehicle control, i.e. lane markings and pavement edges. This
option requires more complicated algorithms and is a less mature technology, but avoids the
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policy disadvantages associated with the cooperative approaches [231. The first system sold
will be able to work on existing marked roads, and will require no infrastructure
modification (although it may be desirable to repaint lines more frequently).

1.2 Perception: an operational level subtask

The driving task has been divided into three levels of subtasks [35]: the strategic level, the
tactical level, and the operational level. YARF performs perception tasks which lie at the
operational level in this model of driving. Various efforts are under way to develop
techniques for performing tasks autonomously at the higher strategic and tactical levels.

Strategic level tasks are global in nature. The primary strategic level task for driving is route
selection. This can be based on static map information, or it can combine the static map
information with dynamic information about traffic conditiong and temporary blockages due
to accidents or construction. A number of systems are under development to provide
strategic-level driving aids. European efforts are described in [8]. These systems typically
include a map database on CD-ROM, a display interface to present the map to a human
driver for initial location and destination selection, and sensors (typically wheel encoders
and compasses) used to maintain an estimate of vehicle location on the map. The
TravelpilotTM system developed by Etak and Bosch [7] is an example of the hardware
infrastructure available to support such strategic tasks. It includes a CD-ROM map database,
processor, display unit, and sensors. While such systems are currently intended as aids for
human drivers, they provide a digital map database and vehicle position tracking capability
which could be interfaced to provide support for strategic level tasks in an autonomous
vehicle.

The tactical level applies domain knowledge (the "rules of the road") and strategic goals to a
model of the current environment around the vehicle. Values are chosen for control
variables to insure that the vehicle remains in a safe and legal state. The ULYSSES system
[42] developed by Reece embodies a detailed model of the tactical level of the driving task.
ULYSSES operates within a simulated world, the PHAROS fine-grained traffic simulator. It
assumes a set of 14 perception routines such as "find next sign", "find current lane", "mark
adjacent lane", "find signal", and "find next overhead sign". In ULYSSES these generate
their results by examining the symbolic internal state of the PHAROS simulator. Physical
and domain constraints are used to generate bounds on acceptable vehicle acceleration, lane
choice, and flags indicating whether the vehicle is in an intersection, and whether it is
waiting for right of way. ULYSSES will not violate the lane abstraction in order to avoid a
collision. Stengel and Niehaus [46] also constructed an expert system to perform the tactical
driving task. Their system detects situations in which a collision appears immanent, and
switches to an emergency mode in which collision avoidance is the only goal.

The operational level consists of the low level perceptual and control subtasks which
provide the support for the strategic and tactical levels. Reece identified 14 perceptual
routines needed to support his tactical model of driving ([42], pages 170-172). Those which
relate to detecting the road location and structure are:

Find current lane. Locate the boundaries of the lane the vehicle is in, determining
the heading and offset of the vehicle with respect to the lane.
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Mark adjacent lane. Check for lane boundaries near a marked location in the
image.

Track lane. Start at a marked location in a lane and track the lane as far as possible
in the image.

Profile road. Identify the lane structure of the road, reporting the location and type
of lane markings.

Find intersection roads. Locate all the approach roads and lanes at an intersection.

Find path in intersection. Similar to "find intersection roads", but selects a lane to
turn from and generates a path through the intersection.

YARF maintains a model of the current lane structure and road curvature, and an estimate of
the location of the vehicle relative to the road. Given these, YARF provides the capability of
"find current lane". It applies perception to verify the model's information about other lanes,
providing the capability of "mark adjacent lane" and "track lane". The SHIVA algorithm
described in Chapter 6 extracts a symbolic description of lane structure from an image,
implementing the capability of "profile road". YARF uses a combination of perceptual cues
and map information to recognize the approach of an intersection, verify the location of the
destination lane across the intersection, and plan a path to navigate through the intersection.
This implements most of the capability of "find path in intersection".

YARF's symbolic model of road structure contains the information necessary to constrain
the search for other traffic objects used in the ULYSSES model such as signs adjacent to the
road, overhead signs, and cars in a specified lane. The YARF system is thus extensible to
include other primitive perception routines identified by Reece, but not currently
implemented within the YARF system.

1.3 The centrality of the symbolic road model

The model of road structure and appearance, whether implicit or explicit, lies at the core of a
road-following system. Models which explicitly represent information about feature
location and appearance can simplify the image segmentation problem faced by the system.
Models which make explicit the geometry of the lane structure of the road can use that
information to take advantage of redundancy in the data and inter-feature constraints.
Explicitly detecting and representing locations where perception fails to verify the
expectations generated by the model allows a system to detect changes in road appearance
and react appropriately. The family of road models used generates constraints which can be
used to filter a noisy image segmentation and extract a symbolic model of the visible lane
structure. YARF takes advantage of each of these possibilities.

1.4 Experimental testing of YARF

The YARF system has been tested on the Navlab I and Navlab II testbed vehicles developed
at Carnegie Mellon. These vehicles have served as platforms for investigating a variety of
issues in outdoor autonomous navigation [52] [53] [49]. Navlab I is a modified Chevy van
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Figure 3: Cutaway view of Navlab II interior

YARF uses a predict-verify-update technique to track the road. The estimated road shape
from the previous image is transformed using an estimate of the vehicle motion between
images to predict the location of the road in the current image. Image segmentation
techniques are applied in small search windows around the expected feature locations to
verify the actual feature locations. These new data points are then used to update the
estimated road shape. Previous systems have used a single segmentation technique for road
tracking, however this is inadequate. Pavement edges, white painted stripes, and yellow
painted stripes are not equally detectable by a single segmentation technique due to
differences in contrast and boundary sharpness. The YARF system provides an extensible
collection of simple segmentation techniques, each of which is designed to reliably detect
the presence or absence of a particular type of road feature. These segmentation techniques,
referred to as feature trackers, are described in Chapter 3.

YARF uses statistical estimation techniques to combine the individual point feature
locations detected by the feature trackers into an estimate of the road shape parameters.
YARF, like a number of other road followers, estimates the shape parameters of a non-linear
model from the coefficients of a polynomial approximation based on a series expansion.
Chapter 4 demonstrates that performing the parameter fitting in a data-dependent coordinate
system reduces the errors introduced by this approximation by a factor of 5-10 for roads
with large curvatures. In addition to this improvement in performance, YARF also takes a
unique approach in its selection of estimation technique. Systems which use a least-squares
based approach are vulnerable to failures caused by false feature data points. YARF is the
first road following system to use LMS (Least Median of Squares) estimation to avoid such
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failures. LMS uses a criterion function which selects a parameter estimate based on the
internal consistency of the valid data within a data set containing contaminating false data
points.

The basic road tracking loop described in Chapters 3 and 4 assumes that the road has a
constant lane structure, with features separated by constant widths. In an urban driving
environment, road features may disappear or change location due to approaching
intersections or changes in lane structure. As a result, for safety reasons it is important that
an autonomous road follower detect situations where its model of the road no longer appears
to reflect reality. Such situations may be expected and represented in the mission map, or
they may be unexpected. Chapter 5 describes the techniques YARF uses to react to expected
changes in road appearance. YARF uses a map of the roads to be traversed in the course of a
mission. This map is generated off line. By using a data-driven algorithm for detecting the
approach of changes in lane structure YARF eliminates the need for a precise metric model
of the road network. Local geometry at an intersection is represented, but distances and road
curvature between intersections are not represented. YARF determines the position of the
vehicle relative to the local intersection coordinate system based on image information
about the termination of features as the vehicle approaches the intersection. Currently the
mission map is static, and is not updated to reflect information gathered in the course of
performing missions using the map. One direction for future work is to eliminate the need
for a quantitative representation of intersection geometry, with the goal of building systems
which can follow the kind of qualitative and partial driving directions which humans give
each other. Another direction for future work is to incorporate learning from experience, so
that the system can improve performance on subsequent retraverses of the same route.

One longer term goal of the research agenda set out in this thesis is reducing the dependence
of YARF on map information generated off line. The SHIVA algorithm, described in
Chapter 6, provides a robust technique for extracting the visible lane structure from an
image of the road. Constraints from a simple domain model are used to filter a noisy edge
segmentation in order to extract feature geometry. YARF extends the capability provided by
similar algorithms by extracting feature type as well as geometry. By applying the
specialized feature trackers used in YARF, it is also possible to classify the detected features
into pavement edges, white stripes, and yellow stripes. The SHIVA algorithm provides a
method for initializing YARF's estimate of the vehicle location and road curvature. It also
forms a basis for further research towards the goal of reacting to unexpected changes in the
lane structure of the road. Chapter 7 summarizes the contributions of YARF, and describes
directions for future work.
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2 Road modeling in YARF

2.1 The role of the road model

The model of road structure and geometry is the central data structure in an autonomous
road following system. It provides information needed to guide and interpret the results
provided by segmentation of the visual input data, and stores information about the road
needed to make tactical driving decisions about lane choice. The limitations of the road
model used in a system play a strong role in defining the performance limitations of the
system as a whole.

The road scene shown in Figure 4 illustrates several of the roles played by the road model.
The vehicle is stopped at a traffic light (not visible). If the route plan indicates that the
vehicle should turn left at the upcoming intersection, then the tactical level needs to obtain
certain pieces of information from the road model in order to carry out the turn. The road
model needs to represent the geometric knowledge that there are three lanes, and that the
vehicle is currently in the right lane. It also needs to represent the semantic information that
the left edge of the right lane is a white line, while the left edge of the middle lane is a
double yellow line, indicating that the vehicle should move one lane to the left in order to
make the required turn.

Figure 4: Road scene
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The operational level also makes demands on the road model. An example of this would be
the estimation of camera tilt in each image frame, as is done in the VITA system[ 18].
Estimation of the tilt requires data from multiple features in order to disambiguate the
effects of camera tilt and road orientation. As a result, if the road model includes only the
edges of the lane the vehicle is in, then the system will not be able to estimate the tilt for this
image due to the occlusion of the entire right edge of the lane. A road model which includes
the full lane structure of the road permits the detection of other features in the case that one
of the lane edges is obscured.

This chapter presents the concept of generalized stripes as a method of road representation.
Generalized stripes include information about road feature type and appearance, unlike
earlier road representation schemes which only included geometric information. In addition,
generalized stripes provide a unifying framework for classifying different representations of
road geometry. Generalized stripes are a generic differential representation of road geometry
which permit arbitrary terrain variations and banjing of the road surface. Previous
representations of road geometry can be classified as special cases of generalized stripes.
The chapter closes with the mathematical definition of the special case of generalized stripe
used in the YARF system. These stripes assume a flat road with no bank and circular arc
spine curves.

2.2 Generalized stripe road models

The representation chosen for roads in the YARF system is as a sequence of generalized
stripes. Generalized stripes define a set of surfaces in a manner analogous to the way in
which generalized cylinders define a set of volumes. A generalized stripe consists of a one-
dimensional feature cross section which is swept perpendicular to a spine curve to define the
road surface (see Figure 5). The generalized stripe model of road structure encodes both the
semantic information needed at the tactical level ("the left edge of the current lane is
delimited by a broken white stripe") and the geometric information needed to perform
operational level perceptual tasks.

The generic definition of a generalized stripe is straightforward. The spine curve is defined
by the vector function S(u) = [x(u) y(u) z(u)] where u is the arc length along the spine curve.

The bank angle of the road cross section at arc length u along the spine curve is given by the
banking function 5(u). The feature cross section function, F(v), indicates the feature type at
offset v from the spine curve. Generalized stripes are distinguished from ribbons [411 in two
ways. First, they have internal structure corresponding to the road markings. Second, they
are not restricted to a plane. The spine of a generalized stripe can be a curve in three-space,
and the stripe may bank.

The location of the point at offset v from the spine curve at arc length u along the spine

curve is determined as follows. Let s. be the point on the spine curve at distance u along the

spine. Let •' be a unit vector in the vertical direction at su, and let P be the unit tangent
vector to the spine curve at S.. The point at offset v on the feature cross section (R,, ) is
determined by the following constraints:

The distance from S,, to R,,, (the length of vector A in Figure 6) is equal to I ,I. the
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Figure 6: Geometry of the differential definition of
a generalized stripe.
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2.3 Previous road models as generalized stripes

Almost all previous schemes for representing road geometry can be viewed as special cases
of the generalized stripe abstraction defined above. Generalized stripes in which the bank
angle is zero everywhere along the spine (53(u) = 0) correspond to the zero-bank model
described by DeMenthon and Davis [11] and Kanatani and Watanabe [251. In these models
the spine curve is an arbitrary curve in 3-space. These models do not constrain the shape of
the spine curve. As a result, the assumption of constant road width used in the algorithms
leads to errors in the reconstructed road shape when there are errors in the location of the
edges of the road.

Dickmanns and Mysliwetz [ 131 assume a zero-bank road model, but also constrain the spine

curve S(u) = [x(u) y(u) Z (u)] to have a form such that the curves .'H(u) = [x(u) y (u) O] and

Sv(u) = [G y (u) z (u)] are clothoids. They use state space estimation techniques to recover

the horizontal and vertical curvatures and curvature derivatives of the spine curve. These
constraints on the shape of the spine curve make the spine shape estimation much more
robust ii. the presence of noise than the general zero-bank model.

The form of the spine can be restricted further by assuming that the road is confined to a ýat

ground plane (corresponding to spines of the form S(u) = [,x(u) y (;,) o], with the zero-bank

constraint 03(u) = 0). Franke [18] describes such a model in which the spine is constrained to
be a clothoid in the ground plane. Earlier work on the VaMoRs project described by
Dickmanns and Graefe [ 12] also used a flat earth clothoid model of the road spine.

The shape of the spine curve can be restricted even further by assuming the spine to be a
circular arc (a clothoid with constant curvature) in addition to the flat earth restrictions. A
very early version of VaMoRs described by Mysliwetz and Dickmanns [37] used such a
model. Schaaser and Thomas describe the use of this type of model in a road following
system developed at the University of Bristol [44].

The most restricted form of generalized stripe used in previous road following systems
assumed the flat earth constraints and modeled the spine as linear or piecewise linear. Such
models were used in the SCARF system [10], the VITS system [54], the LANELOK system
[29], and road following work at FMC [31] and the University of Michigan [33] [391.

2.4 Generalized stripes in YARF

The current implementation of YARF restricts the spine curve to the flat earth, circular arc
case described above. The local road geometry is defined by three parameters. These are the
spine curvature, spine x intercept, and spine tangent at its x intercept, expressed in a vehicle-
centered coordinate system (see Figure 7).

Such a model of road geometry limits the ability of the system to navigate roads with
significant deviations from the flat earth assumption, but provides a model with a small
number of parameters capable of driving many city roads and highways. Limiting the form
of the spine curve to a parametric family of curves with a small number of parameters makes
the shape recovery less sensitive to noise in the feature positions extracted from the image
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Figure 7: Parameterization of the road spine arc in YARF

data. The impiementation of YARF was done with an object-oriented programming style.
Thus, replacing the current model with a more general model would involve limited changes
restricted to the routines which predict feature location and estimate the road shape
parameters.

Coordinate systems in the ground plane are defined with positive curvatures indicating
curves to the right and negative curvatures indicating curves to the left. Angles are measured
with respect to the y axis, with positive angles to the left of the y axis and negative angles to
the right of the y axis (see Figure 8).

y (0 0)

negative curvature positive curvature

positive 0

~-x

Figure 8: Conventions for gr.oiind plane coordinate systems

There are two basic predictive procedures associated with the class of generalized stripes
used in YARF. The first involves computing the parameters of an arc which is offset from
the spine by a given amount. The spine is defined by a point on the spine (xs. Ys), the
tangent direction 0s at that point, and the spine curvature ks. The feature has offset dF from
the spine. The procedure returns a point (xr yYd on the feature arc, the tangent 0. at that
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point, and the curvature kF of the feature arc. Since curvature is 1 / radius, the feature arc
curvature is kF = I/ (l/ks-+ dF) = I/ (( + ksdF)/ks) = ks/(1 +ksdF). -(XrY will be chosen

so that it lies radially out from (xs, ys) , so (xF, Y) = (Xs + dFcos s, Ys + dFsin OF) and OF OS

(see Figure 9).

feature

spine d F

Figure 9: Locating a point on a feature arc given a point on the
spine, the spine tangent at that point, and the spine curvature

The other basic predictive function returns the x value (x ) and tangent direction (06) of the

closest point on an arc (if any) with a specified y value. This procedure takes as inputs a
circular arc and a y value, y,. The arc is defined by a point on the arc (xA, YA), the tangent
direction at that point 0A' and the arc curvature kA. In the case where the curvature is not

close to zero, the procedure begins by computing the center of the arc,

(XC, YC) = (xA + (coseA) /kA, YA + (sinOA) /kA). The solutions for x, are then the solutions to

the quadratic equation (Xf - XC) 2+ [ (y./_ Yc) 2 - k21 = 0. If the quadratic equation has no real

solutions, the routine returns an error value indicating that there is no point on the specified
arc at that y value. Otherwise, the value for x, which gives the smaller distance from the

point (xA, YA) is chosen. The tangent at that point is computed by the formula
O = atan ((xC - x,) / (Yt- Yc)) - (n/2). YARF uses a convention that the tangent points
forward along the arc. The angle computed by the formula is checked to see if it meets that
condition. If it does not, n is added to 06 so that it points in the correct direction (see Figure

10).
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Figure 10: Geometry of predicting the x value corresponding to a
given y value on an arc

In the case where the curvature is very close to zero, the arc is treated as a straight line. If
cos 0A is very close to zero, the line is parallel to the x axis, and the routine returns an error
value indicating that there isn't a solution (unless YA = yf, in which case there are an infinite
number of solutions). Otherwise, Of = 0 A and xf = xA- (Yvf-YA)tanOA"

2.5 Conclusion

The generalized stripe concept provides a general framework within which different
schemes for the representation of road geometry can be classified as special cases which
restrict the form of the spine curve and bank function. YARF chooses a form of generalized
stripe in which there is no bank to the road and the spine arc is a circular arc confined to a
horizontal ground plane. The model of road appearance and geometry is central to YARF,
serving a number of functions.

First, it constrains the location, orientation, and appearance of the road features which the
system is tracking in the image. Modeling the expected location and type of the road
features simplifies the segmentation part of the task in several ways. Knowledge of the
feature type being looked for permits the use of specialized segmentation techniques tuned
to detect a particular type of feature rapidly and reliably. Knowledge of the expected feature
location reduces the number of pixels which need to be examined in an image, and reduces
the likelihood of false feature detections by limiting the portion of the image examined.
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Second, it provides the constraints relating individual measurements of feature location to
the position of the vehicle on the road and the local road curvature. These constraints
generate the system of equations which are solved through least squares or least median
squares techniques to estimate the vehicle position and road curvature in each frame.

Third, it provides the context for analyzing situations in which expected features were not
detected in the image data. By combining map and image data in this way YARF is able to
detect and navigate through expected changes in lane structure and intersections.

Each of these functions serves as the theme of one of the remaining technical chapters in the
thesis. The final technical chapter deals with the issue of autonomously extracting the
feature cross section of a generalized stripe from image data. This is done by using a weak
domain model to filter noisy edge data. Such an algorithm can serve several purposes in an
autonomous road following system. First, it can locate the road to initialize the system's
estimate of the vehicle's location. Second, it can serve as a recovery mechanism when the
road structure changes in a way not predicted by the system's existing model of the road
network.
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3 Feature Detection

3.1 Introduction

The performance of high level vision systems is ultimately limited by the quality of the low
level segmentation algorithms used in the system. Binford [4] observed that this was the
case for existing object recognition systems and suggested increased emphasis on research
into low level image segmentation. While this is a worthy goal, it does not solve the problem
for researchers who wish to build high level vision applications now. Road following
systems have also fallen prey to limitations imposed by available low level segmentation
techniques. One early system developed at CMU looked for strong edges in the image
corresponding to the edges of the road. Unfortunately, the test road had a tree located next to
a sharp curve. The system would detect the clean, sharp edges of the tree in the image, and
observe that they were a better extension of the road edges in the lower part of the image
than the actual road edges as the road curved off. The result was a test run in which the
Terregator test vehicle attempted to climb the tree.

YARF is able to use its explicit models of road geometry and appearance to overcome many
of the segmentation-related limitations of pervious road following systems. Knowledge of
the road geometry allows the system to focus algorithms and computational resources on
areas of the image which are likely to contain the features the system is looking for. This
reduces both the computational cost of verifying the location of the road and the possibility
of false feature detections due to imperfect heuristic segmentation algorithms. YARF
explicitly represents the different types of features which compose the road, such as painted
stripes of different colors and pavement/terrain boundaries. This allows the system to use
multiple segmentation techniques which are based on small models of the expected
appearance of particular types of features rather than trying to develop a sufficiently
competent general purpose segmentation technique to detect and classify all possible types
of road feature with equal reliability.

3.2 Previous approaches to road feature extraction

Other road following systems have relied on a single segmentation technique, and can be
split into three groups based on the type of information they use to detect road features: edge
based, pixel color based, and connectionist. Each of these approaches has limitations which
precludes coping with the full range of variability to be encountered in the road following
domain.

Edge based systems can be split into those which use a traditional edge operator (typically
the Sobel) and those which use various kinds of oriented edge detectors. Systems which
locate boundaries of road features using the Sobel edge detector and Hough line extraction
include LANELOK [27], MARF [57], and work done at the University of Michigan [391.
Systems which use custom oriented edge detectors include the VaMoRs [ 121 and VITA [ 171
systems. Edge detection as a strategy for road feature location suffers from problems caused
by extraneous edges due to shadows, puddles, cracks in the pavement, and other blemishes
on the road surface. Yellow lines typically have much lower contrast than white painted



page 18

lines, making them hard to detect in an intensity image [271. Edge operators which examine
a single band image cannot distinguish between markings of different colors, an ability
which is necessary given the semantic meaning of the marking colors.

Systems which use pixel color to detect road features can be divided into systems which use
thresholding of a single color feature, systems which classify pixels based on estimates of
probability of color class membership, and systems which use domain-specific heuristic
region extraction techniques. Systems which extract the road region by thresholding a
preselected color feature include the Sidewalk II system[191 and the VITS system[54]. The
Sidewalk II system created a histogram of the blue band of a color image. The "best" valley
in the histogram was selected as the threshold separating road pixels from nonroad pixels.
This simple technique worked adequately in the domain of the system, navigating around a
network of paved campus sidewalks bordered by grass. The VITS system used a (blue - red)
color feature for segmentation. Rather than have a single threshold separating road and
nonroad, the VITS system had an upper and lower bound for pixels which were sunlit road,
and an upper and lower bound for pixels which were shadowed road.

Systems which classify pixels based on an estimate of the probability of a given RGB value
being road or non-road include the FMC system [31] and the SCARF system [10]. In the
FMC system the RGB image values were projected through a linear transform onto a single
color feature. Normalized histograms of road and non-road regions in the image are used to
adaptively compute the likelihood ratio that a pixel with a given feature value is a road
pixel. The SCARF system used Bayesian classification assuming Gaussian color classes
whose means and covariances were adaptively determined.

These systems all limit themselves to distinguishing between the road surface and the
surrounding off-road terrain, ignoring any internal markings and structure possessed by the
road. Region segmentation and pixel classification techniques tend to oversegment or
undersegment (often in different parts of the same image), making the extraction of the road
region and associated markings difficult. Misclassified pixels result in a noisy segmentation,
requiring the use of a robust technique to extract road position and shape. The SCARF
system, for instance, assumes the road is locally close to straight and parameterizes each
possible road by the angle it makes with vertical in the image and the vanishing column of
the road on the horizon row of the image. The road position is determined by a voting
scheme in which each road pixel votes for every set of road parameters for which that pixel
would lie on the road and against every set of road parameters for which that pixel would lie
off the road. Similarly, non-road pixels vote against sets of road parameters which would
place them in the road, and for sets of road parameters which would place them off the road
surface.

Systems which use a domain specific heuristic technique to extract regions corresponding to
white road markings include the University of Bristol system [441 and the Fujitsu system
[38]. In the University of Bristol system a pixel is classified as stripe if it is brighter than a
threshold intensity level and between edges of opposite sign separated by the expected stripe
width. Connected components are extracted to locate possible stripe regions, and arcs are fit
to stripe regions to determine the road geometry. In the Fujitsu system, pixels above an
adaptively selected intensity threshold are classified as stripe, and a search is done for likely
road stripe regions. These systems also fail to distinguish between white and yellow painted
stripes, and face the problems caused by the difference in contrast between the two types of
painted line.
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The ALVINN system [40] explores a connectionist alternative to road detection. Rather than
attempt to formulate a segmentation technique to detect various types of road features, a
three layer backpropagation network is trained by watching a human drive along a stretch of
road for several minutes. The hidden units in the network develop feature detectors for that
particular road. The system has driven on roads which range from unpaved, poorly defined
dirt roads to well marked multilane highways. The advantage of this approach is that the
simple architecture used appears to be able to extract relevant features for a broad variety of
roads. The disadvantage is that the system has no model of the road structure, and as a result
changes in lane structure result in the network failing to give a reliable steering direction.
While such failures can be detected automatically and control returned to a human driver,
the only way to recover is to retrain the network.

All these approaches share certain common limitations. They fail to model the internal
structure of the road in full detail..Driving requires knowing the color, continuity, and
relative location of the markings on the road. Autonomous road following systems,
therefore, need to have segmentation techniques which are capable of distinguishing
between different color markings and between continuous and broken markings.

One approach to overcoming these limitations would be to search for a "silver bullet"
segmentation technique. Such a segmentation technique would extract different road
features such as painted lines (white and yellow, single and double, continuous and broken)
and pavement/shoulder boundaries with equal reliability. It would also provide a sufficiently
rich representation of the segmented image to allow discrimination between these different
types of road feature. YARF rejects this approach. No single heuristic based approach to
segmentation appears to be robust enough to deal with the full range of variation
encountered, while techniques based in physical models of image formation are not mature
enough to deal with the unconstrained lighting, weather effects, and mix of natural and
synthetic surfaces found in the outdoor environment.

Instead, YARF incorporates multiple simple segmentation techniques specialized to detect
different road features and capable of detecting when they have failed to see the expected
feature. Such an approach allows the system to discriminate between markings of different
colors, and to detect when the markings are broken rather than continuous based on periodic
absences of the feature.

The initial implementation of YARF used a variety of feature detection techniques which
had been developed in previous road following work[30]. As work progressed, part of the
research effort focused on developing robust feature detection algorithms (referred to as
feature trackers in the remainder of the thesis). This resulted in specialized techniques for
detecting yellow and white stripes [1] and pavement boundaries. The next section discusses
the feature trackers developed for the YARF system. This is followed by a description of the
instrumentation in YARF for evaluating the performance of the feature trackers.
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3.3 Feature trackers

3.3.1 Tracking yellow painted stripes

The ideal feature tracker would exploit a feature which is invariant under a broad variety of
environmental conditions. By switching from the RGB color space to the IHS (intensity,
hue, saturation) color space the perceived color of a pixel (the hue) can be separated out
from the relative brightness (intensity) and whiteness (saturation) of the pixel. Hue appears
to provide an invariant feature for detecting yellow painted stripes. Figure 11 illustrates this
invariance. The histograms show number of pixels versus hue angle for windows containing
a yellow stripe and surrounding pavement. Red is located at 0 degrees on the wheel, green at
120 degrees, and blue at 240 degrees. The top histogram is for an image taken in sunlight
with dry pavement. The middle histogram is for an image taken in dense mottled shadows.
The bottom histogram is for an image taken on an overcast day with wet pavement. The
peak on the left of each histogram consists of pixels from the yellow stripe, while the peak
on the right consists of pavement pixels. Note that while the exact location of the yellow
stripe peak shifts slightly, it stays firmly within the 40 to 90 degree range of the hue wheel.
While the hue of yellow painted stripes appears to be invariant over a broad range of
weather conditions, it needs to be noted that the location of the hue ranges for yellow stripe
and pavement pixels is dependent on hardware factors such as filters used and the color
balance of the individual camera. The library of functions providing the tracker support
includes routines to allow the user to examine hue and saturation profiles for windows
within an image to test different filter and color balance arrangements.

A feature tracker was developed to exploit this invariance. Pixels in the feature prediction
window are classified as yellow stripe or background based on hue and saturation (see
Figure 12). Next, a single pass of thinning is done to eliminate isolated yellow stripe pixels.
The predicted stripe width must exceed a specified threshold for this thinning to occur in
order to avoid thinning the stripe away in windows near the top of an image. The centroid of
the pixels classified as yellow stripe is returned as the feature location. If there were no
pixels classified as yellow stripe in the window, then the tracker returns an error code to
indicate that the feature was not found. The tracker also counts the number pixels in the
search window which are black (intensity < 2) or white (intensity > 253). If more than 90%
of the pixels in the window are black or white, the tracker returns an error value indicating
that the window was saturated due to dynamic range limitations of the camera.

The hue of a pixel is defined as hue = acs 2xR-B-G)
(2 x (R -G)2 + (R-B) x (G-B)

If B> G then hue = 2 x ic - hue [2]. Colors with a specified hue lie on a plane which
contains the intensity axis. This gives two points which lie in that plane, (0, 0, 0) and (255,
255, 255). For colors whose hue falls between red and green (0 and 120 degrees on the color
wheel), a third point in that plane can be found by fixing the blue and green components of a
pixel and solving the hue equation for the red value.
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Figure 11: Stability of yellow stripe hue under different conditions

Fixing B 0 and G =1, the R value corresponding to a given hue value ( 0< hue s: 120) Is
Rhu 0.5 +0.5 x J3x (cos (hue)) /(sin (hue)). Given the point (Rhu~1 )wt u

value hue, the normal to the plane containing color values which have that hue is

[R hue 1o] x [I 1 1] = [I (-R hue) (R hue - 1)]. The equation of the plane is therefore

R-~R huxG+ (R hu - 1) x B =0, which simplifies to (R -B) + (B -G) x Rhue =0.

ue.
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Figure 12: Classification of pixels as yellow stripe or
background based on hue and saturation

The planes in (R, G, B) space which correspond to the minimum and maximum hue values
for yellow stripe pixels are computed the first time the tracker is run. Pixel classification is
done by plugging the pixel (R, G, B) value into the two plane equations. If
((R-B) + (B-G) xRminhue) <0 and ((R-B) + (B-G) XRmaxhue) >0 (the pixel falls

in the specified hue range) and I - (3 x min(R, G, B)! (R + G + B)) > minsat (the pixel's
color is not too close to grey) then the pixel is classified as yellow stripe. Otherwise the pixel
is classified as background. Doing the classification this way rather than by explicitly
computing the hue of the pixel eliminates the need to call the arccos function for every
pixel, and results in rapid classification.

3.3.2 Tracking white painted stripes

While color provides a fairly strong invariant characteristic of painted yellow stripes, it
provides a very poor cue for distinguishing between grey pavement and a white stripe.
Intensity contrast is a much more reliable cue for detecting the location of white stripes.
Two trackers have been created and tested for the robust detection of white painted stripes.
Both average the image in the prediction window along the expected direction of the feature
in order to improve the clarity of the position of the stripe in the image signal. The first
convolves the blurred signal with a filter which looks for a bright bar of a specified width
(the oriented bar tracker). The second looks for step edges in the blurred signal which have
opposite sign, similar magnitude, and whose separation is within some tolerance of the
expected feature width (the matched edge tracker).



page 23

3.3.2.1 The oriented bar tracker

The blue band of the image is averaged parallel to the expected orientation of the stripe in
order to reduce variation in the signal caused by shadows, stains, puddles, and other
extraneous distracting features. This averaging enhances the contrast of the stripe with the
background and reduces the 2-D search window to a 1-D signal. A parallelogram shaped
window is used rather than an oriented rectangular window in order to make the averaging
operation fast and avoid the need for precomputed masks. Rows are fetched offset by the
expected slope of the stripe for orientations within 45 degrees of vertical in the image.
Corresponding columns of the blue band are averaged to produce a one dimensional signal.
In the case of a predicted feature orientation greater than 45 degrees from vertical in the
image, columns are fetched and the corresponding rows averaged to produce the one
dimensional signal. The white stripe appears in this one dimensional signal as a plateau
bordered by sharp step edges.

The location of the plateau is detected by cross correlation with a center-surround filter. The
filter has a central region with weights of + I bordered on either side by regions with weights
of -1. The width of the central (positive weight) region matches the expected width of the
stripe. The negative weight region on either side has half the width of the expected stripe.
Using weights of +1 and -1 allows the speeding up of the cross correlation through the use
of partial sums. Figure 13 graphically illustrates the change in the cross correlation sum
which occurs as the mask moves one pixel to the right. The leftmost pixel drops out of the
window, and is added back into the sum. The new rightmost pixel is subtracted from the
sum. The pixels which change sign as the borders between positive and negative weights
shift are added or subtracted from the sum appropriately. The cross correlation value is not
normalized.

+ + + + + + ++-
Previous window

S,-H-K-- I +++++++++lI I- - - -

New window

Pixels whose contribution to the cross correlation sum changes
Figure 13: Using partial sums to speed up the cross correlation

The maximum and minimum values of the cross correlation are located. Two criteria must
be met for the maximum to be considered valid. The first is that the maximum must exceed
a specified threshold. The second is that the maximum must exceed the absolute value of the
minimum. If the maximum passes both of these tests, then the location of the maximum is
reported as the feature location. If either the absolute or relative value of the cross
correlation peak is too low, then the tracker returns an error value indicating that the stripe
was missing in the window. Figure 14 summarizes the processing steps in the oriented bar
tracker.
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Errors in the predicted stripe width and orientation affect the magnitude of the maximum
cross correlation value. Aubert [II describes experiments comparing the peak cross
correlation values for operators of various widths at both the correct orientation and at an
orientation in error by 10 degrees. Such prediction errors can produce false negative
responses from the tracker by reducing the value of the cross correlation peak below the
tracker's acceptance threshold. His conclusion was that the tracker could tolerate an error in
orientation estimate of approximately 10 degrees and that it is desirable to inflate the width
estimate slightly to reduce sensitivity to underestimating the stripe width.

False positives can occur if the window contains a step edge of the proper orientation. If the
stripe is actually present in the window and the distracting edge has sufficiently higher
contrast, then the wrong location will be reported for the feature. If the stripe is absent then
two problems occur. The first is the addition of a contaminant into the feature position data.
The second is the failure to recognize that the feature was absent at the predicted location.
The next tracker was created in order to avoid such false positives.

3.3.2.2 The matched edge tracker

The oriented bar tracker is unable to distinguish between peaks in the cross correlation
function which correspond to the target shape in the signal (a plateau of specified width
bounded by step edges) and other signal shapes which produce above threshold responses.
The matched edge tracker was created to eliminate such false positives. It looks for the
white stripe by running a simple one-dimensional edge detector over the averaged signal
and looking for a pair of edges with opposite contrast separated by the expected stripe
width.

The algorithm for the matched edge tracker is very similar to the algorithm for the oriented
bar tracker. The same staggered fetching and averaging is done to produce a one-
dimensional blue signal. Instead of the center-surround mask used in the oriented bar
tracker, a mask with a left negative half and right positive half is used. The width of the
mask is equal to the expected width of the stripe. The weights used are +I and -1 as in the
oriented bar tracker to allow fast cross correlation. The cross correlation value is normalized
by dividing the raw value by half the width of the mask, producing a value which represents
the blue intensity change.

The algorithm then locates extrema in the output of the cross correlation with the edge
detector filter. This results in a list of candidate edges in the signal. This set of edges is
searched for a pair of edges which meets the following three criteria:

0 the edges have opposite contrast, with the signal brighter between the two edges,

* the edges are separated by a distance within a specified percentage of the expected
feature width, and

* 0 the absolute magnitudes of the two edges are similar (specifically, let Mp be the

magnitude of the positive edge and let MN be the absolute value of the magnitude
of the negative edge -- the pair is accepted if IMp - M, < a X (Up,+ M,V) ).

The tracker indicates that the feature was absent if no pair of edges in the window meets
these criteria. Figure 15 shows the stages of processing in the algorithm for this tracker.
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The matched edge tracker shows a slightly higher rate of false negative responses than the
oriented bar tracker. This is due to the dependence on similar edge magnitudes as well as
expected width. If the pavement is brighter on one side of the stripe than the other the edges
may not have sufficiently similar magnitudes. The rate of false positive responses is much
smaller than that of the oriented bar tracker, however.

Figure 16 illustrates a situation in which the oriented bar tracker generates a false positive
response, while tne matched edge tracker correctly determines that the white stripe is absent.
The white stripe was obscured by snow in the specified search window, and was not visible.
The middle plot in Figure 16 shows the value of the cross correlation function for the
oriented bar tracker. This tracker responds strongly to the broad intensity peak between
columns 0 and 20, and less strongly to the feature between columns 40 and 55. The
maximum cross correlation value is well above threshold even though the intensity function
looks nothing like the sharp plateau the filter is intended to locate.

The matched edge filter is able to-detect the absence of the white stripe because it does not
find a matching pair of edges of similar contrast and opposite sign. The lower plot in Figure
16 shows the location and magnitude of the local maxima in the edge filter response in the
matched edge tracker. In this window there are no locations where the edge filter returned a
positive value, as the signal is monotonically decreasing at the scale at which it was
smoothed by the edge detector.

3.3.3 Tracking ragged road/shoulder boundaries
The edge between the pavement surface and the adjacent terrain is often ragged. In addition.

the off-road area is often highly textured (gravel or grass shoulders, for example). As a
result, edge detectors which look at a small window are inappropriate for detecting such
boundaries. Instead, the same simple oriented edge detector used in the matched edge
tracker is used to find such boundaries. The averaging parallel to the expected feature
orientation reduces the effects of texture and compensates for deviation of the boundary
from a straight edge.

The width of the edge mask is selected so that the smoothing of the filter is done at a
constant spatial frequency in the ground plane. This is done by dividing a fixed width by the
width of a pixel on the ground plane along the center row of the search window to get the
width of the mask in pixels for that window. The mask is cross correlated with the averaged
blue signal just as in the matched edge tracker. If the largest edge magnitude in the window
is above threshold, that position is returned as the feature location.

This is unquestionably the least reliable of the trackers described. Noise edges can have
higher contrast than the road boundary, making it impossible to select a threshold to avoid
false positives without generating false negatives. In general, tracking pavement/terrain
boundaries with local window operators appears to be very difficult. Only the VaMoRs
system claims to be able to robustly follow pavement edges using a local window operator.
It is difficult to assess to what extent their success is due to the tracker (a simple oriented
edge tracker) and to what extent it is due to the care they put into the formulation of their
data filterit,.., which includes modeling the rate of change of the road curvature.
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Figure 16: Comparison of oriented bar and matched edges trackers on
window where the white stripe is not visible

3.4 Performance evaluation

Tracker performance has a number of dimensions. The most important, but most difficult to
evaluate, is the robustness of an operator under varying environmental conditions. Next is
the locational accuracy of an operator. Discrepancies between the system's models of
various aspects of the world and the world itself, as well as errors due to the segmentation
techniques used, create errors in twe estimates of feature locations returned by the trackers.
The final dimension of performance considered here is tracker execution time. In the
presence of limited computational resources it may be necessary to weigh the utility of
examining a given area of the image against the cost in processing time, requiring the ability
to model the execution time of the various segmentation techniques used. YARF is
instrumented to aid in the evaluation of all three of these dimensions of performance.
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3.4.1 Estimation of environmental robustness of trackers

Heuristic segmentation techniques are not based on analytic theories of how scene and
illuminant properties interact with the sensor to produce the image, making it impossible to
specify the limits of their performance analytically. As a result, the only way to evaluate this
dimension of performance is by performing experimental runs under a variety of
environmental conditions and seeing how the trackers perform.

YARF provides routines which can be invoked off-line to examine tracker performance on
test images. As an example, histograms of hue and saturation in an image window can be
produced to examine cases where the usual thresholds appear to be incorrect. Profiles of the
averaged blue signal in an oriented window and cross correlation values with the operator
mask can be produced for the oriented bar, matched edge, and oriented step edge trackers
(this is the source of the profiles in Figure 14 and Figure 15) in order to analyze cases where
they give incorrect results.

Future work in this area would involve a systematic testing of the trackers. Data would be
gathered at a set time daily over a period of a year or so in an effort to see as broad a range
of weather situations as possible. One possible barrier to such a plan would be the
commitment of researcher and vehicle time involved in such experimentation. Opportunistic
experimentation taking advantage of bad weather is only a partial answer, as vehicles are
shared resources whose time needs to be scheduled in advance for use by other
experimenters or for maintenance. High quality recorded video data may be able to solve
this problem, as the goal here is purely to test the trackers, and not other aspects of the
system such as the model fitting or path tracking.

3.4.2 Estimation of tracker feature localization error

Estimation of the variance of the errors in feature position estimation for the different
tracker types is more difficult. Ground truth is not known. The system processes a large
number of images (on the order of 500 for every kilometer travelled), making comparison
with ground truth difficult even if ground truth were known. Examination of data from
Navlab runs showing the backprojection onto the assumed ground plane of tracker data from
multiple frames indicates that errors in calibration, feature position localization, and
estimation of vehicle motion between frames do not appear to be significant. An example is
shown in Figure 17. Data from eight images have been backprojected onto the ground plane
assumed by the calibration and placed into a common coordinate system using the estimate
of vehicle motion between frames supplied by the Navlab controller. The squares in the
figure are individual feature positions returned by the trackers. Note how well they line up
as the vehicle traverses the gentle curve in the road.

While experiments have not been done to measure the error in feature localization relative to
ground truth in test images, a statistical measure of the coherence of the data as illustrated in
Figure 17 has been implemented. The system computes and periodically prints the variance
of the distance between the individual tracker data points projected onto the ground plane
and the estimated location of the corresponding road features. This provides a measure of
how much of the individual feature point locations are accounted for by the stripe model. In
a typical run with the Navlab II, this produced a standard deviation of 4.37 inches for points
from the yellow hue tracker and a standard deviation of 3.93 inches for points from the
oriented bar tracker. In general, the standard deviation is usually under 6 inches, consistent
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Figure 17: Tracker results integrated over multiple frames as the vehicle moves

with the coherence illustrated visually in Figure 17. These standard deviations reflect all of
the sources of error in the system, including errors in feature localization in the image plane,
errors int-oduced by the flat ground plane model, errors in map updating due to noise in the
controlle• 's estimate of vehicle motion, and errors due to small changes in lane width. For
comparison, the errors in human drivers' estimates of their lateral offset from the lane center
typically have standard deviations of 6.54 to 14.3 inches [5].

3.4.3 Estimation of tracker execution time

Timing routines are provided to fit a simple model of tracker execution time to timing data
computed for each window processed by a tracker. The model of window execution timne is
time = pixelcost x area + overhead, or time = Earea 11 x •pixel cost overhead] T" in matrix form.

Each tracker filters (execution time in seconds, window area in pixels) pairs to update the
estimate of per-pixel cost and per-window overhead for that tracker. Each tracker also
records the number of pixels examined with that tracker in each frame.

The timing estimation filter periodically prints the current estimates of model parameters for
each tracker being used in a run. The following example of the output was taken from a
YARF run on the Navlab 11 vehicle. YARF was running on a Sparc 2 with 32 megabytes of
memory, using the yellow hue and oriented bar operators. After 205 frames the parameter

a a . i I I I
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estimate. for the yellow hue operator was [pixetcosr overhead] [2.59x10-5 8.42xO-4] with

covariance [i"25x 10-12 -1.61 x 10]9 The parameter estimate for the oriented bar operator was
L-1.61 x10- 9 2.17x10-6

pixeL.cost overhead] T = [1 .03 x 10-5 1.6 8x1 ]T .with covariance 1"21x10713 -6.05x10-1°][- _. 05x10-10 3.16X10-6

While YARF does not currently use this information, it is available for later use in
extensions of this research. YARF does not take processor speed into account and drives at a
constant speed set by the user at the beginning of the run. Such models of tracker execution
time could be used in conjunction with an estimate of the utility of checking a particular
image window to select which windows to examine given limited processing time, and to
slow the vehicle if the time needed to verify essential features exceeds the current image
cycle time.

3.5 The advantage of using multiple trackers

One of the major claims of this thesis is that performance can be improved by using model
information about feature type and appearance to guide the application of specialized
feature trackers. The following experiment was performed in order to demonstrate the added
effectiveness of using multiple specialized feature trackers.

Sixteen images were examined from a sequence taken on a divided road. The double yellow
line in the center and the white stripe on the right side of the lane were used as test features.
The position of each feature was picked out by hand using a cursor, and trackers placed at
preselected rows along the feature. The rate of positive responses for each tracker was
computed from the data. The results are summarized in the table shown in Figure 18.

% positive response % positive response

Tracker type to double yellow stripe to white stripe

yellow hue tracker 94 **

oriented bar tracker 28 91
matched edge tracker 37 84
oriented bar, 43% usual thresh. 72 **

matched bar, 50% usual thresh. 62 **

Figure 18: Relative tracker reliability

The trackers compared for the double yellow stripe were the yellow hue operator: the
oriented bar and matched edge operators with the thresholds normally used for white stripes:
and the oriented bar and matched edge operators with reduced thresholds to compensate for
the lower contrast of yellow stripes. The yellow hue operator detected the double yellow
line in 94% of the search windows. The contrast based operators performed much worse.
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With the peak magnitude threshold used to track white stripes, the oriented bar operator
detected the double yellow line in 28% of the search windows. Reducing the threshold to
43% of the usual value increased the detection rate to 72%. With the edge magnitude
threshold used to track white stripes, the matched edge operator detected the double yellow
line in 37% of the search windows. Reducing the threshold to 50% of the usual value
increased the detection rate to 62%. Thus, by having a specialized feature tracker to detect
yellow stripes, YARF is able to more reliably detect this type of feature than if it had only
one or both of the contrast based operators.

The trackers compared for the white stripe were the oriented bar and matched edge
operators. Both perform well in detecting the white stripe. The oriented bar operator
detected it in 91% of the search windows, while the matched edge operator detected it in
84% of the search windows. As was mentioned above, this slightly lower success rate for
the matched edge tracker is due largely to the contrast match constraint.

3.6 Conclusion

The YARF approach to detecting road features in images takes advantage of constraints
provided by the system's models of road geometry and appearance to simplify the
segmentation problem. Expected feature locations and orientations provided by the model
allow more reliable detection of white painted stripes and pavement boundaries by
restricting consideration to edges with the proper orientation near the expected location.
Model knowledge of feature types permits the use of simple, specialized segmentation
techniques exploiting simple models of the appearance different feature types. Yellow stripe
detection uses hue invariance as a cue, while white stripe detection uses expected width and
orientation in conjunction with image contrast.

The specialization of trackers to detect particular feature types, and the ability of the
trackers to indicate that the feature appeared to be absent in the given search window
combine with model information about feature types to provide a basis for discriminating
between features in the way needed to support the semantics of the road following task. The
ability to detect the absence of particular types of features also provides support for the
capability to detect changes in lane structure and the approach of intersections, as will be
described in a later chapter.
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4 Road model parameter estimation

The trackers described in the previous chapter return image coordinates which correspond to
locations on the features defining the road. Those individual measurements must then be
combined into a unified estimate of the location of the vehicle on the road and the local road
geometry parameters (in this case, the spine curvature). The constraints provided by the
generalized stripe model of the road geometry generate the system of equations relating
individual feature point measurements to the vehicle position and road curvature.

The first section of this chapter presents a review of the different techniques other vision-
based autonomous road following systems use to extract the scene geometry from image
segmentation data. These fall broadly into four categories: backprojection, differential,
Hough, and statistical methods. Backprojection and differential methods tend to be sensitive
to noise in the segmentation results. Hough techniques are difficult to apply to models with
more than two parameters, and peak detection is sometimes difficult. Statistical methods
appear to be superior. They provide a well defined criterion for selecting model parameters
given noisy data, and have well understood properties.

The second section describes the integration of feature location data from multiple image
frames into a local map. This local map serves several roles in YARF. It is used to combine
data from multiple images for road model parameter estimation. It is also used to record
information about locations where expected features were not detected for analysis by the
map navigation module of the system to detect changes in lane structure and intersections.

The third section analyzes the errors introduced by approximations to the model for
parameter estimation. While the nonlinear equations defining circular arcs are used to
predict feature locations for the trackers, for estimation purposes approximations are made
to the equations in order to have a system which is linear in its parameters. Several other
road following systems use similar linearized models. This introduces errors which affect
the accuracy of the recovered road location and shape. Experiments demonstrate that the
resulting errors can be significantly reduced by performing the estimation in a data-
dependent coordinate system. This process, which rotates the data into a coordinate system
chosen to minimize the error, is referred to as virtual panning.

The final section describes the use of robust estimation to handle situations where
contaminants occur in the data which would otherwise cause the system to lose tracking of
the road. The data provided by the feature trackers is not perfect. In order to extend the
reliability of road tracking it is necessary to use an estimation technique which is more
robust than standard least squares techniques in situations where there are contaminating
false data observations. YARF demonstrates the use of Least Median of Squares estimation
for road following, and the ability of LMS estimation to avoid errors which would cause a
system using standard least squares estimation to fail.

4.1 Methods for recovering model parameters

Four main types of methods have been used to recover road model parameters from image
segmentation data: boundary backprojection, differential reconstruction, voting in the model
parameter space, and statistical fitting techniques.
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In boundary backprojection methods, image features detected by the segmentation are
backprojected onto the (assumed) ground plane, and consistency constraints are applied to
determine which features are part of the road. This is the method used in the VITS [54],
FMC [31], and U. Bristol [44] systems. These techniques are intrinsically limited by the flat
earth assumption, which restricts their ability to successfully extract the road in scenes with
significant changes in road elevation.

Differential reconstruction algorithms recover three dimensional road structure using
assumptions of constant road width and zero road bank [1i][25]. These algorithms do not
enforce higher level constraints on relative feature location. As a result, errors in the image
segmentation are interpreted as changes in road slope due to the constant width assumption.
This can produce large errors in the recovered road shape. Algorithms which sample the
road edges create a tiling problem, in which poorly chosen samples result in a road
reconstruction which smooths over terrain features. The results of a comparison of flat-earth.
reconstruction with two differential methods are presented in [36].

In parameter space voting techniques, detected feature locations vote for all possible roads
they are consistent with. This method is used in SCARF [10], in algorithms developed at the
University of Michigan [33][391, and in some of the LANELOK [27][28] algorithms. The
main advantage of these techniques is their robustness in the face of large amounts of noise
in the segmentation results. The main disadvantage is the difficulty of using voting for
models which have more than two or three parameters, resulting in large multidimensional
Hough spaces. Also, peak detection in the accumulator space can be difficult. Noise in the
data can produce structure in the accumulator array which prevents the use of simple
blurring to enhance the peak.

Neural network techniques can be though of as a form of parameter space voting technique.
The ALVINN system [40] is a neural net architecture for road following which learns to
drive on different types of roads by providing a reduced resolution image as input to the net
and training the system to emulate the steering behavior of a human driver. The output of the
network represents the steering direction which the vehicle should use for the camera input
shown. Thus, the network is parameterizing road scenes by the steering direction which
causes the vehicle to track the road. The system appears capable of extracting appropriate
features on a broad variety of road types, and has successfully driven the Navlab II vehicle
for a distance of 21.2 miles on an unmodified public highway near Pittsburgh. ALVINN has
no model of road shape or the location of the vehicle on the road. As a result, heuristics have
to be used to integrate ALVINN into symbolic systems which require such information.
Also, it is an open question whether there is a reasonably small closed set of networks which
can handle general road navigation on a large set of different roads.

In statistical fitting procedures, road model parameters are fit using the observed data points
and the equations of the road model. While some systems which use statistical fitting
techniques backproject the feature data onto a flat ground plane, they differ from systems
which use boundary backprojection by imposing the stronger requirement that the road
spine belongs to a specified family of parametric curves. Standard techniques such as least
squares or robust techniques which are less sensitive to outlying data observations can be
used. VaMoRs [131, YARF, and other of the LANELOK algorithms use this type of
technique. Statistical fitting techniques have a number of advantages over the other
available techniques for model parameter recovery. They enforce smoothness in the
presence of noise in the data. They are computationally efficient and they have a vast
literature of theory, techniques, and tools associated with them.
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4.2 Constructing the local map

YARF integrates feature data from multiple frames by constructing a map of the local
environment. This map is used rather than a filter based approach for two reasons. First,
existing robust estimation techniques are batch methods. Second, the map is needed by other
modules in YARF for other purposes.

This map represents the feature points in a vehicle-centered coordinate system. As data
points are detected in new images they are entered into the map, and as data points from old
images move outside the boundary of the map they are deleted. There are two steps involved
in maintaining the local map of feature data. The first is the transformation of the data from
previous images in the vehicle-based coordinate system using the estimate of vehicle motion
provided by the controller. The second is the projection of the image coordinates of feature
points in the current image onto the local ground plane in order to add them into the map.

The vehicle controllers on the Navlab I and Navlab II vehicles maintain an estimate of
vehicle position and orientation. The difference in estimated vehicle position and orientation
between the digitization of the current image and the digitization of the previous image is
used to update the locations of points from previous images in the vehicle-based coordinate
system used in the local map. The origin of this coordinate system is the (x, y) location of
the focal point of the camera on the ground plane.

The process of constructing the local map is illustrated in Figure 19. The three diagrams
show the local map for three successive images during a run. The picture on the left
(rotating the page so that the captions are upright) shows data from a single frame
backprojected onto the ground plane. The rectangle at the bottom is the Navlab. The
trapezoid at the top is the field of view of the camera cropped at the farthest distance any of
the features is being tracked in the image. The line along the left edge has markings every
two meters to provide scale. The small diamonds are feature locations returned by the
trackers. The first digit of the number next to each feature point is the frame number mod 10,
the second digit is the number of the feature in the road model. The middle picture shows
the map for the next frame, frame seven. The points from frame six have been transformed
based on the vehicle controller's estimate of the motion between the frames, and the new
data points have been backprojected onto the ground plane and added into the map. The
right picture shows the process continuing for the next frame. Data points are dropped from
the map when they pass a specified distance behind the vehicle.

The coverage of each feature becomes fairly dense as additional frames are processed.
Several instances can be seen in Figure 19 where windows from different frames fell close
to each other on the ground plane. In these cases the feature locations are very close to each
other, giving an indication of the accuracy of the camera calibration and vehicle position
estimation.

The camera model used in YARF assumes a flat ground plane and perspective projection.
The camera is tilted with respect to the horizon, but there is no roll. Figure 20 illustrates the
geometry relating a pixel in the image plane to a point on the ground plane. The image plane
coordinate sysiem is defined with its origin (0, 0) in the upper left corner of the image. Row
numbers increase towards the bottom of the image, column numbers increase towards the
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Figure 19: Integration of data from multiple images into a local map
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right side of the image. The camera ground frame in the ground plane has its origin directly
below the focal point of the camera. The projection onto the ground plane of a ray from the
focal point through the center of the image defines the y axis of the camera ground frame.

focal point tilt virtual

A image plane A focal point

horzon-rowJ

ctr-r w B D row in virtual

image planero w rwi ita

B
off-ang camht

y axis

C E

ground plane

y axis C x axis
x axis ground plane

Figure 20: Camera backprojection geometry

The first step in converting between image coordinates and ground coordinates is the
conversion between image row and ground y. Let rf = pixel-height/focaljength. The
tangents of off ang and tilt are given by tan (off ang) = rf x (row - ctr-row) and

tan (tilt) = rfx (ctrrow - horizonrow) . By the definition of the tangent of an angle in

a right triangle, y = cam_ht/ (tan (tilt + off ang)), Applying the trigonometric identity
for the tangent of the sum of two angles yields the formula

cam-ht x (o - rf2 x (row - ctrrow) x (ctr row - horizon-row))
rfx (row - horizonrow)

The formula for converting from y in the camera ground frame to image row can be obtained

by some simple algebraic manipulation of the above formula. Define

ki = rf2 x camht x (ctr row - horizonrow) , k2 = camht + k I x ctrrow, and

k3 = rfx horizonrow. Then the image row corresponding to a given y value in the camera-
yxk3+k2

based ground frame is: row = x k3+ k2yxrf+ki
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The relationship between the image column of a point and the x value of the corresponding
point on the ground plane is defined by the similar triangles ABD and ACE. Since the ratios
of the lengths of corresponding sides are equal, we know that (AC/CE) = (AB/BD). The
length of side AC, the ray from the focal point to the ground plane through the center

column of the row on which the pixel lies, is /y2 + camht2 . The length of AB, the ray from
the focal point to the center of the row of the pixel in the image plane, is

ifocaljlength2 + (row-ctr row)2 xpixel_height2 . The length of BD, the distance from
the center column of the row to the column of the image pixel, is given by
pixelwidth x (column - ctr-col). Substituting these lengths into the equation relating the
lengths of the sides and solving for the length of CE, the x coordinate of the point on the
ground plane corresponding to the pixel, yields the equation:

CE =x= (column - ctr.col) x pixel width x 4y2 + cam ht 2

focal-length x I + ef x (row - ctr.row)2

Defining cf = pixel-width/focaljlength this becomes:

x = cfx (column -ctr col) x y + rc-ctr row)

Calibrating the camera using this model involves measuring the camera height, the horizon
row of the image, the center row and column values, and the row and column pixel size
factors rf and cf. The camera height can be measured directly with a measuring tape. The
horizon row is estimated by looking at a straight stretch of road, selecting points on the left
and right edge of the road, and computing the row of the vanishing point. The model
assumes that the principle ray passes through the center of the image, so the center row and
column values are known given the choice of imge coordinate system. The convention
used places (0, 0) in the upper left comer. The row number increases moving downward in
the image, and the column number increases moving to the right. Measuring the Y value
corresponding to the center row of the image yields the rf value. Measuring the number of
columns corresponding to a known width on the ground yields the cf value. The translation
and rotation between the camera-based frame on the ground plane and the coordinate system
of the vehicle (with its origin at the center of the rear axle) are measured separately.

4.3 Road model and parameter fitting used in YARF

Section 2.4 described in detail the road model used in YARF A one-dimensional feature
cross section is swept perpendicular to a circular arc spine curve in the ground plane. Figure
21 shows an example of detected feature locations in an image, and the road geometry
recovered from those feature locations using the constraints provided by the stripe road
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model. For estimation purposes two approximations are made to the equations defining the
road model in order to have a systems of equations which is linear in the parameters being
estimated.

The first approximation simplifies the form of the spine arc. The circular arc spine curve is
approximated by a parabola. A parabola represents the first three terms of the binomial
series expansion of the equation of a circular arc. The second approximation involves the
relationship between individual feature locations and the spine curve. YARF estimates the
parameters of the spine arc of the road rather than fitting each feature separately. This
requires relating the points on the different features being tracked to the location of the spine
curve. The point on the spine which corresponds to a given point on a feature lies along a
line passing through the feature point and perpendicular to the feature tangent at that point.
Rather than use this nonlinear relationship and an iterative fitting procedure, YARF
translates the data points parallel to the x axis to bring them approximately onto the spine
arc. This is illustrated in Figure 22 below.

~feature I

~~spine

feature points corrected to lie on the approximation used in YARF, with
spine by translating them feature points corrected to lie on the
perpendicular to the feature tangent spine by translating them parallel to the
at each point x axis

Figure 22: Feature to spine correction approximation in YARF

The model that results from these approximations is

x -- 0.5 x curvature x y2 + head-tan x y + spinetrans - offset. (x, Y) is the position on
the ground plane of a detected feature point. Offset is the offset of the feature from the road
spine. Curvature is the curvature of the spine arc. Head-tan is related to heading, the
tangent of the spine arc at the x-intercept, by the formula
heading = atan (1/head_tan) - (7r/2). This corrects for the rotation due to the
estimation being performed with x as a function of y. Spinetrans is the x-intercept of the
spine arc. Given a set of data points on the ground plane which lie on different features in
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Figure 21: Road image with detected feature locations (top) and recovered
vehicle location and road curvature (bottom)
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the road model, standard statistical fitting techniques can be used to recover the spine arc
parameters of curvature, heading, and spinetrans. YARF uses either standard least squares
fitting or least median of squares fitting. The next subsections discuss in more detail the
errors introduced by making the approximations used to derive this model, giving an
analysis of the magnitude of the errors introduced.

4.3.1 Approximating a circular arc by a parabola

Consider the equation of a half circle centered at the origin, x = r -y2. This can be

expressed as a series x = cO+c] xY+c 2 xy 2 +c 3 xy 3 + ... Performing the binomial

series expansion to solve for the coefficients results in the solution co = r, c= 0.

c,=-0.5 x r-, and in general c, = (cn , x (n -3)) /(n x r) . Ignoring terms beyond 2

yields the parabola x = r+0.5xY2 xr-'. The c',.., of sign of the y2 term is due to the
curvature convention used by the Navlab controlier (see Figure 8). Introducing translation in
x simply changes the interpretation of the constant term of the series from co = r to

c. = r + Xcenter. Translation in y makes the coefficient of the y term in the series nonzero by

substituting y' = y -Ycenter into the parabola equation above.

The axis of the fit parabola is implicitly the y value around which the series expansion is
being made. The further data points lie from that axis, the greater the divergence between
the estimate of arc curvature and the actual curvature. This effect is shown in Figure 23. The
graph plots estimated curvature vs. the angle subtended by the data for an arc with unit
curvature. Twenty data points were generated evenly spaced along the specified section of
arc. The curve marked with diamonds shows the case where all the data lies above the x
axis. The curve marked with stars shows the case where the x axis passes through the center
of the data. Increasing the angle subtended by the data corresponds to holding the radius of
curvature of the arc fixed and increasing the size of the local map window, or to holding the
size of the local map window fixed and decreasing the radius of curvature of the arc.

As can be seen from the graph, as the fraction of the arc circumference spanned by the data
increases, the error in the estimated curvature rises much morc slowly when the x axis
passes through the center of the data. Since the model equations constrain the axis to be
parallel to the x axis, it suffices to rotate the data so that the x axis is perpendicular to the
predicted arc tangent at the mean Y value of the data points.

4.3.2 Translating data points perpendicular to the Y-axis

YARF tracks multiple features from the road model. Data points from features offset from
the spine have to be translated to lie on the spine in order to combine the locations from the
different features into an estimate of the spine arc parameters. The translation is made
parallel to the x axis rather than perpendicular to the (unknown) feature tangents in order to
keep the problem linear (see Figure 24 below). The error in the x coordinate of the
corresponding spine point introduL--d by this approximation is

error = (x - xcenter) - offset + j(x -xce; - otfsct - (2 x offset x radius).

• ! I I I r
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Figure 23: Effect of coordinate frame on the estimate of arc curvature using the
parabolic approximation, showing estimated curvature for cases in which points all
lie alove the x axis (bottom left) vs. cases in which x axis passes through the center

of the data points (bottom right)

The magnitude of this error is also dependent on the coordinate system chosen for the fit.
Again, rotating the data so that the x axis is roughly perpendicular to the predicted road at
the mean y value of the data spreads the error more evenly among the points and reduces the
size of the error for the points with larger y values.
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Figure 24: Error introduced by translating points to the road
spine parallel to the X axis

In the extreme case all of the data comes from a single feature. This can happen in situations
such as driving through a tight curve with a fixed camera, where the lane edge on the inside
of the curve is typically not visible. In such a case the estimated curvature will be that of the
visible feature rather than that of the spine, as the approximation would then be equivalent
to shifting the feature arc horizontally by the feature offset. When the data points are
balanced around the spine the effect is minimized. This makes the effect highly dependent
on the specific geometry of the current situation. Unlike the error due to the series
approximation, the error introduced by this approximation cannot be cleanly analyzed in the
general case.

In the special case where all the data comes from a single feature offset from the road srine,
the relative error is errorradius = (radiusspine - radiusfeatur.) /radiussP ne. Since
radiusfeature = radiusspine + offsetfeature, errorradius = -offsetfeature/lradiusspine. Thus, tracking
a single feature offset 3 meters (roughly 10 feet) from the road spine on a curve with a spine
arc radius of 30 meters will introduce a 10% error into the estimate of the spine arc radius.

4.3.3 Evaluation of approximation errors: Simulation results

Simulations were run in order to provide quantitative estimates of the errors introduced by
the approximations described above, and to show the importance of fitting the data in a
"natural" coordinate system in which the x axis is perpendicular to the road tangent at the
mean y value of the data points. We call such rotation of the data before model fitting virtual
panning. The camera and road geometry models from an actual Navlab run were used to
generate synthetic road images of specified curvature, and YARF was run on the synthetic
images to gather data on the difference between the estimated road shape and the actual road
shape.
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The simulated vehicle drove 2 meters between images, keeping centered in the lane with the
rear axle perpendicular to the spine curve. The simulator was set up to use the same road and
camera models to generate the images and to backproject and fit the data, and the image data
is idealized. This eliminates sources of error other than the approximations described above.
After allowing the simulation to run for 10 frames to allow the system to settle into a steady
state, the fits from the eleventh to twentieth frames were averaged and compared to the
known model.

The error measure chosen was distance from the true lane center to the estimated lane center
at a given distance along the estimated lane center arc. This error was plotted for distances
starting at the rear axle of the vehicle and extending out to 40 meters along the estimated
lane center. The front bumper of the vehicle is approximately 3.5 meters in front of the rear
axle. The error measure is illustrated in Figure 25 below.

error

true lane center

vehicle

arc length

estimated lane center

vehicle x axis (rear axle)

Figure 25: Illustration of error measure for spine fit simulations

Figure 26 shows the results for the first set of simulations, in which the parameter fits were
done in the vehicle coordinate frame. Note that in all cases the error in the range of 5 to 15
meters from the rear axle is very small, staying within a foot of the actual lane center. As the
curves become tighter the errors increase dramatically for distances greater than 20 meters
along the estimated lane center. The asymmetry of the results for the positive and negative
curvature cases is due to the pan of the camera and the offset of the camera from the center
line of the vehicle, which results in different visibility of the left and right lane markers
when the vehicle turns left than when it turns right.

Figure 27 shows the results for the second set of simulations. In this set of simulations the
data was rotated so that the x axis was perpendicular to the predicted road at the mean v data
value. Notice that the magnitude of the error is kept under 80 cm. at all distances out to 40
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meters along the estimated lane ..enter, and for all radii of curvature down to +/- 30 meters.
This shows the improvement in fit accuracy achieved by rotating the data into a "natural"
coordinate system.

4.4 Parameter estimation by Least Median of Squares fitting

4.4.1 Robust estimation: terminology and the LMS algorithm

Data can be contaminated by observations which do not come from the process whose
parameters are being estimated. Such observations are called outliers. Their presence in a
data set can result in parameter fits that are grossly incorrect when standard least squares
techniques are used as estimators. Outliers pose a particular problem for the YARF system.
They will arise when there is a false positive response from a tracker, or when the road
features deviate from the stripe model. Because the tracker windows are placed at the
predicted road position, outliers will not be random and may pull the fit incorrectly towards
the predicted road location and away from the actual road.

There are two approaches to making estimation insensitive to outliers. The first, outlier
detection, attempts to identify the contaminating data points and eliminate them before
performing a standard least squares fit to the remaining data. A good survey of techniques
for outlier detection can be found in [3]. The second approach, robust estimation, attempts
to design estimators which are less sensitive to the presence of outliers than standard least
squares estimation.
An increasingly popular robust estimation techniques is called Least Median of Squares (or

LMS) estimation [43]. Consider the linear system yi = Oxi + r, where 03 is the vector of

parameters to be estimated, and e is a noise term. Standard least squares finds the estimate

which minimizes Ir2, where ri is the residual ri = Oxi - yi. Least Median of Squares

2tries to find the estimate 03 which minimizes median(r2). The case of fitting a line in two
dimensions provides a simple geometric intuition for what the LMS estimate is. The LMS
estimate is the line such that a band centered on the line which contains half the data points
has the minimum height in y (the dependent variable) (see Figure 28).

The computation of the LMS estimate is straightforward, and is similar to Bolles' RANSAC
algorithm [16]. Random subsets of the data are chosen. The standard least squares estimate
of the parameters is made for each subset, and the median squared residual of the entire data
set is calculated for that estimate. The estimate which produced the lowest median squared
residual is selected as the final estimate.

The breakdown point of an estimator is the smallest fraction of the data that needs to consist
of outliers in order for the parameter estimates to be pulled arbitrarily far from the correct
values. In the case of standard least squares, the breakdown point is asymptotically zero,
since a single outlying observation can cause pull the fit arbitrarily far from the correct
result. The breakdown point of LMS estimation is 50%, the maximum achievable.
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Figure 28: Example LMS fit

The relative efficiency of an estimator is the ratio of the lowest achievable variance for the
estimated parameters (given by the Cramer-Rao bound) and the variance achieved by the
estimator. In the case of LMS estimation the relative efficiency is 2/n = 0.637. In practice,
the variance in the parameter estimates can be reduced by using the value of the median
squared residual to estimate the variance of the noise in the data, eliminating data points
more than three standard deviations away from the initial LMS fit, and refitting the
remaining data points using standard least squares.

Two phenomena complicate the task of identifying outlying observations. The first,
masking, occurs when there are multiple outliers in the data which jointly influence the fit in
such a way that their residuals do not look unusual. The second, swamping, occurs when
outliers influence the fit in such a way that valid data points have suspiciously large
residuals which make them appear to be outliers. Selecting a robust estimation technique
which shows low sensitivity to masking is important in the YARF domain because outliers
will occur near the predicted road location, and will therefore tend to influence the fit in a
consistent way. LMS estimation shows little sensitivity to masking, another factor in its
favor.

4.4.2 Examples of the effects of contaminants on estimated road shape

Contaminating data points can arise from a number of sources. The first source is false
positive responses from the feature trackers. Figure 29 shows an example of such a
situation. Snow obscures the white stripe marking the right edge of the lane. While the
yellow stripe tracker correctly locates the double yellow line, the oriented bar tracker returns
incorrect locations caused by texture in the snow. Because YARF searches for the features in
small windows at the predicted feature location, the locations of these outliers are highly
correlated with each other, producing masking. These incorrect data points pull the least
squares fit away from the correct value, as shown by the rightward trend in the reconstructed
lane center at farther distances.

Figure 30 compares the results of applying least squares and least median squares estimation
to data from the area shown in Figure 29. The least squares result, shown on the left, splits
the fit error among all the data points. As a result, the estimated road shape is incorrect, with
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Figure 29: Outliers caused by false positive tracker results

the reconstructed lane located between the valid data points from the double yellow line on
the left edge of the lane and the invalid data points from the snow on the right side of the
lane. The least median squares result, shown on the right, correctly ignores the outliers on
the right side of the lane and places the valid data points from the left lane marking within
the reconstructed double yellow line

False positive responses from the low level image segmentation techniques are the most
obvious source of contaminating data points, but changes in road appearance present
another source. Exit ramps are an example of this type of source of outliers. While the left
edge of the lane continues in a way consistent with the previous lane curvature, the right
edge of the lane veers off to the right. Least squares will try to split the error between the
points from the left and right lane edges, and may track the exit ramp by mistake as a result.
This problem has been observed in a number of other road following systems, including
VITA [17] and ALVINN ([40], Section 5.1.6). Because least median squares selects a fit
which ignores points that are inconsistent with the majority of the data, it can avoid the
influence of points on the right lane marking as it veers off for the exit ramp.

In order to demonstrate this, both least squares and least median squares estimation were
performed on a sequence of images tagged with the associated vehicle positions that had
been taken on a highway near Pittsburgh. Figure 31, Figure 32, and Figure 33 show the
results of the two estimation methods for three of the frames in the sequence. In Figure 31,
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Figure 30: Least Squares (left) and Least Median Squares (right) road fits to
data with outliers from snow covering the right lane marker

showing the results for frame 6 of the sequence, the least squares and least median squares
techniques produce essentially identical fits. In Figure 32, frame 12 of the sequence, the
least squares result has placed the estimate of road position between the points from the left
and right edges, and as a result has incorrectly locked onto the exit ramp. This can be seen
from the lack of points from the left lane edge near the top of the camera field of view, and
the points from the right edge of the exit lane in the same area. Least median squares, on the
other hand, correctly detects that the right lane marker is veering away in a manner
inconsistent with the bulk of the data. It ignores those points (which appear noticeably to the
right of the estimated right lane marker position), and correctly estimates the lane curvature
as a mild curve to the left, tracking the left lane marker. By the frame shown in Figure 33,
frame 22, the divergence is obvious. Least squares has lost the left lane edge and is tracking
the right edge of the exit ramp. Least median squares has correctly tracked the left lane edge
and has picked up a single point near the top from the right lane edge marker where it
reappears near the top of the image.
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Figure 31: Least squares result (bottom left) and least median squares result (bottom
right) for frame 6 in exit ramp image sequence (top)
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Figure 32: Least squares result (bottom left) and least median squares result
(bottom right) for frame 12 in exit ramp image sequence (top)
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Both lane edges were marked by solid white stripes in the example shown above. In many
cases the left lane edge will be marked by a broken white stripe, with the result that data
from that edge of the lane will be more sparse. This will interact with the median square
residual criterion to make it more difficult, if not impossible, for least median squares to
handle such cases. This suggests a direction for future research to develop variants of the
standard least median squares algorithm which incorporate knowledge about the data to
handle such imbalance. Also, the lower relative efficiency of the least median squares
estimator introduces larger amounts of noise into the system's estimate of road curvature.
Some smoothing of the curvature estimates may be necessary.

In addition, it is possible that the exit ramp may be a better continuation of the data than the
lane. Currently YARF does not deal with this possibility, and uses the LMS estimate to
chose the best continuation of the data as the correct answer. In order to handle the general
case, it would be preferable to explicitly tag data points as outliers based on their residual
error relative to the LMS fit. The local map could then be scanned for groups of adjacent
outliers which might indicate a shift in lane marking position, and higher level information
about the road could be brought to bear to determine how to respond to the situation. Such
an extension would be very similar to the existing techniques used in YARF to detect
changes in lane structure and approaching intersection, as described in Chapter 5.

4.5 Conclusion and future work

YARF uses a non-linear model of road shape. YARF fits a low-order polynomial function to
the feature data in order to be able to use a linear estimation technique. YARF then
determines the parameters of the non-linear shape model by assuming that the coefficients
of the polynomial are related to them through the corresponding terms of the power-series
expansion of the model. In the case of YARF, the spine is assumed to be a circular arc, and a
parabola is fit to the data. In the VaMoRs [12] and VITA [18] systems, the spine is assumed
to be a clothoid, and a cubic polynomial is fit to the data. The experimental results presented
in this chapter show how the magnitude of the errors introduced by this method depends on
the choice of coordinate system in which the fit is performed, and demonstrate that rotating
the data into a "natural" coordinate system significantly reduces the size of the errors.

The use of least median squares to perform the shape parameter estimation was described.
Examples were shown demonstrating the immunity of LMS estimation to contaminants in
the feature data in situations where a least squares based system would fail. While uneven
representation of features in the data set may make it impossible for LMS to handle all such
situations, YARF improves on existing systems and opens up avenues for addition research
on robust estimators which can handle data imbalance.

The road model chosen for YARF, which uses the flat-earth assumption and a circular spine
arc, does not represent the current state of the art. Extending the road model to use a clothoid
spine curve under the flat earth assumption would be straightforward, and would involve
adding a cubic term to the series approximation to the spine curve. Extending the road
model to include vertical curvature would be more difficult. Extracting the feature locations
by a technique which directly detected their 3D position would allow easy construction of a
3D local map and allow the decoupling of the estimation of horizontal and vertical road
curvature. Either stereo or fusion of color and range data could be used to provide such 3D
feature data. This would eliminate the need to simultaneously estimate the height of the data



page 55

points along with the road shape. As a result, the horizontal and vertical curvatures could be
estimated by fittir.g a cubic polyno-idal to the projections of the data onto the X-Y plane and
Y-Z planes.
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5 Map based navigation

The algorithms described so far permit YARF to track a segment of road which has a
constant feature cross section. Lane markings terminate at intersections, and lane structure
can change as the road changes width, or as a turn lane appears approaching an intersection.
A versatile road following system needs to be able to detect and react to such changes in
road structure.

This chapter describes how YARF detects and reacts to changes in road feature cross section
which are predicted by the system's world model for the mission it is performing. Locations
where the feature trackers fail to detect expected features are examined to determine if the
pattern of failures is consistent with the behavior of the road markings at the end of the
current road segment. If so, then the mission map is used to predict the location of features
on the next road segment. Feature trackers are applied at these locations to verify or refute
the predicted change in lane structure.

This results in a very different style of map-based navigation than that used in most previous
autonomous navigation systems. The detection of approaching landmarks is triggered in a
bottom-up manner through the detection of environmental cues. This is in contrast to the
usual top-down approach, in which perception to detect approaching landmarks is triggered
based on proximity to the landmark in a world model defined in terms of a global coordinate
system. Landmark locations are much less constrained, placing a larger burden on
perception. Detection of a particular landmark is a process extending over multiple image
frames, rather than a one-shot process.

5.1 Global coordinates considered harmful

Related previous work includes two types of research. The first is general research into
using landmark information in maps as an aid to robot navigation. The second is research
into using a combination of map information and image features to locate and navigate
intersections. Most existing systems in these two categories share a particular implicit
model of mission execution and of the nature and function of landmarks.

The system built by Fennema [ 15] for the Harvey robot at the Uniiersity of Massachusetts
uses landmark descriptions stored in the world model for two functions. In the first, action-
level perceptual servoing, landmarks are used to monitor the robot's performance of
primitive actions such as "steer 0.34 radians left" or "move 2.56 meters". This is done to
reduce the magnitude of error in command execution compared to open-loop execution. The
second function, plan-level perceptual servoing, uses landmarks as milestones in the
execution of a specified mission plan. As the system determines that it should be
approaching a milestone landmark it begins looking for the landmark using its perception
capabilities. Once the landmark has been detected the system servos the vehicle to correct
any error between where it thought it was and its actual location in the world.

Thorpe and Gowdy [501 define the concept of an annotated map as a way of organizing data
for autonomous navigation. Annotations consist of a header, which specifies the type and
location associated with the annotation, and a data field, which can contain arbitrary data.
The location assigned to an annotation can be either a point, a line segment, or a polygon
(defined in world coordinates). Queries retrieve all annotations of a given type within the
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specified query polygon. A trigger is a special kind of annotation. If the vehicle's path
crosses the location of a trigger (generally a line segment or polygon), a message containing
the data associated with that trigger is sent to a module specified in the header of the trigger
annotation. One of the purposes of the annotated map formalism is permit off-line
specification of decisions for which there are no autoiiomous planning capabilities in place.
This is done through the use of triggers to specify choice of perception module, route at
decision points, and so on.

Kushner and Puri at the University of Maryland [32] describe recognition of intersections
using a mixture of map data and extracted image features. Their system begins by extracting
the road boundary in an image. Points are sampled on the boundary and backprojected onto
the ground plane. These points are then matched to road edge segments from the world map.

The Sidewalk II system at Carnegie Mellon [191 similarly matches image and map data to
navigate a network of campus sidewalks. A simple histogram thresholding technique is
applied to the blue band of a color image to classify pixels as road or nonroad. The boundary
of the road region is then approximated by a polygon. Edges of the road region are matched
to edges predicted from the map data. This allows the system to detect intersections
modeled in the map and navigate through them.

These systems share a style of navigation in which actions, including the execution of
perception routines, are triggered by the vehicle approaching points or entering regions
which are defined in terms of a global coordinate system. That is very different from the
style of navigation implied by the type of directions humans give each other for navigating
on a road network. Consider this example, describing the route from the Carnegie Musetim
in Pittsburgh to an exhibit at another location:

"From The Carnegie parking lot, go north on Craig Street to the first light and turn
left (west) on Fifth Avenue;... Turn left on Craft Avenue, then right on Forbes Ave-
nue to the on-ramp of the Boulevard of the Allies. Once on the Boulevard, follow
the Three Rivers Stadium signs to 1-376 West (the Parkway). From the Parkway,
take 1-279 North across the Fort Duquesne Bridge toward the North Side; stay in
the left lanes. Exit at Three Rivers Stadium and turn right at the first light onto East
Allegheny Avenue. At the third light, turn right onto W. North Avenue: at the fifth
light turn left onto Federal Street. Turn left at the fifth street onto Jacksonia Street
(one-way); the entrance to the parking lot is at 505 Jacksonia, about five blocks on
the left, opposite Garfield Street." (directions to the John Cage installation for the
1991 Carnegie International)

A key feature of such directions is that the model they provide has no metric information of
any kind. Landmarks are counted ("...turn left at the fifth street..."), but they are not used to
locate the vehicle in some global Cartesian coordinate system, in strong contrast to the way
landmarks are used in most current autonomous navigation systems. The style of navigation
implied by such directions is one in which actions are triggered by the recognition of
landmarks which are defined by the sequence in which they are encountered, and not by
their location in a world-based coordinate frame.

Kender and Leff [261 provide a theoretical analysis of the complexity of performing this
style of navigation. They model the task of landmark and sensor selection in a scenario
where a robot is travelling along a one-dimensional environment such as travelling along a
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single road or corridor. The environment has a set of landmarks along its length. These
landmarks are defined only by their appearance and the sequence in which they will be
encountered. The system is assumed to have multiple perception routines capable of
detecting different (possibly overlapping) sets of landmarks. They show that selecting which
landmarks to detect and which perception modules to use to detect them in order to
minimize the cost of perception involves solving an NP-complete problem.

The ALVINN system [401 provides a connectionist framework for performing this style of
data-driven navigation. Different neural networks are trained to detect different types of
roads or landmarks. The output of each network is compared with the ideal pattern of output
activation the network was trained to generate to measure how typical a given input image is
of the type of feature the network was trained to recognize. Recognition of landmarks is
triggered by changes in the confidence of the various networks. As an example, when the
system approaches an intersection, the confidence of the road following network drops
sharply due to the change in road appearance at the intersection. The system can then
consult its map to determine which way to navigate through the intersection.

YARF uses a more traditional symbolic approach to detecting intersections in a data-driven
fashion. The techniques used eliminate the need for a detailed description of the shape of the
road segments between intersections. They also eliminate the need for an accurate estimate
of the vehicle location in a global coordinate system. Estimates of vehicle motion between
the capture of successive images are used to register data from multiple image frames. The
errors in estimating vehicle motion over the distance between successive images are
typically very small. The accumulation of error over time in the estimate of global vehicle
position does not matter in YARF, and can be ignored.

5.2 YARF's road map

YARF models the network of roads to be traversed during a mission as a graph, with each
edge in the graph representing a segment of road with constant lane structure. These
segments are modeled by generalized stripes as described in Chapter 2. While the feature
cross section of each segment is represented in the map, the shape of the spine curve is not.
The spine curvature is determined from the detected feature points, as described in Chapter
4.

Each node in the graph represents either a change in lane structure or an intersection. In the
case of changes in lane structure, YARF assumes that the spine tangents and curvatures
match at the transition between the two stripes. In the case of intersections, the map provides
the relative position and orientation of the end of each stripe at the intersection. These are
defined in a coordinate system local to each intersection. As the vehicle drives along the
road, information from the feature trackers is used to locate the end of the current road
segment. This determines the position of the vehicle in the local coordinate system attached
to the intersection being approached. By detecting the locations of the ends of road
segments in a data driven fashion, the need to define the road network in terms of a global
coordinate system is eliminated.

In addition to information about road topology and intersection geometry, the map also
provides control information to specify decisions which would be made by the tactical level
planning routines in a fully integrated system for autonomous road navigation. Each road
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segment has annotations which specify which features in the stripe cross section to track;
which feature trackers to use to detect those features; and which lane the vehicle should use
in that segment. Figure 34 summarizes the information represented in YARF's global map.

relative position and orientation of intersection branches

route specification

feature cross section for each road segment

specification of features to track and trackers
to use for each road segment

Figure 34: Description of the global map information used in YARF

The global map is static, and is generated off line. Figure 35 shows an example of the YARF
map for a simple mission. The road at the bottom changes lane structure to include a left
turn lane as the road approaches the intersection at top. The relative locations and
orientations of the branching roads at the intersection are shown as defined in the map.
Driver's aids such as the TravelpilotTM system [7] can be expected to provide information
about the topology of the road network, and at least some crude information about
intersection geometry. Such systems are unlikely to include detailed information about the
lane structure of the roads, however. As a result, research will be needed into techniques to
extract lane structure from images without a prior model. Chapter 6 describes efforts along
those lines carried out as part of this thesis.

In the annotated map system described by Gowdy and Thorpe, control annotations are
triggered when the vehicle's estimated position falls inside a specified region in the map. In
the YARF system, the transition to a new road segment is instead triggered when the
behavior of the features observed by the system changes in the manner predicted by the
map. Using the map shown in Figure 35 as an example, the double yellow line changes to a
single white stripe at the transition from segment 1 to segment 2, and a new double yellow
line appears to mark the left edge of the turn lane. By recognizing the end of the yellow
stripe in segment 1, YARF can test for and verify the predicted lane markings in segment 2.
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segment 3

segment 2

double yellow line

single white stripe

segment 1

segment 0

Figure 35: Simple YARF map
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5.3 Hypothesizing intersections based on tracker failures

Expected intersections and changes in lane structure are detected through a combination of
expectation generated by the map with data from the feature trackers. Individual point
failures to detect features are examined to see if their pattern matches that predicted for the
end of the current road segment in the map. If so, a hypothesis is generated that the vehicle
is approaching the next stripe transition (lane structure change or intersection) along the
mission route. Trackers are placed along the predicted location of features from the next
road segment along the route. If the results of the trackers confirm the hypothesis, then
YARF continues to track the new road segment as the vehicle travels through the segment
transition. Otherwise, YARF attempts to continue tracking the current road segment.

There are four stages in intersection hypothesis generation. In the first stage, locations where
trackers failed to detect predicted features are entered into a local map of the area around the
vehicle. In the second stage, the updated estimate of road location in the current image is
used to check whether any failures were due to mispredictions of feature location. In the
third stage, the tracker locations for each feature in the local map are examined for runs of
adjacent failures which may correspond to gaps in the continuity of the feature. In the fourth
stage, the different features being tracked are examined for overlapping gaps which could
signal the approach of the next intersection along the route.

5.3.1 Detection of tracker failures

As described in Chapter 3, YARF uses Inultiple image segmentation algorithms, each of
which is specialized to robustly detect a particular type of road feature. The predicted road
location is used to generate search windows at selected rows in the current image. The
trackers then examine those search windows to detect the actual location of the predicted
features. The trackers are designed to indicate when a search window didn't contain the
expected feature as well as to provide the feature location when the search window does
contain the feature. The hue-based tracker for yellow stripe detection described in Section
3.3.1 provides an example of how this is done. When the tracker algorithm detects that no
pixels in the search window fell inside the specified section of color space, the tracker
returns an error value indicating that the feature was not seen.

Tracker failures may be due to the actual absence of the feature, or they may be due to errors
on the part of the segmentation technique. In order to reduce the possibility of erroneously
hypothesizing the end of the current road segment, it is desirable to try to explain the cause
of tracker failures when possible. Some classes of incorrect failures 'Can be detected based
on the local properties of individual search windows. YARF currently only checks for one
common cause of false failures, image saturation. On bright, sunny days the limited
dynamic range of the color camera used can result in images where some areas in shadow
are black while other areas which are not in shadow are white. The tracker counts the
number of pixels in the search window which are black (intensity < 2) or white (intensity >
253). If more than 90% of the pixels in the window are black or white, the tracker returns an
error value indicating that the window was saturated due to camera dynamic range
limitations. This allows YARF to disregard failures which can be explained based on image
saturation in the window. By eliminating such tracker failures from further consideration,
YARF can reduce the chance of triggering an incorrect lane structure change or intersection
hypothesis.
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5.3.2 Integration of tracker results in a local map

Section 4.2 described the process of constructing the local map. Data is integrated over
multiple frames by transforming old data into a current vehicle-centered coordinate system
and back-projecting new data onto the assumed ground plane. In addition to recording
locations where features were detected within the search windows, locations where the
features were expected but not found are also recorded.

5.3.3 Identifying gaps in individual features

Section 5.3.1 explained how some false tracker failures could be detected and explained
based on a local property of the individual search windows, the fraction of pixels within a
few grey levels of black or white. Other types of false failure cannot be detected based on
local image properties. One class of such failures is due to mispredicted search windows. In
this case, the failure to see the feature results from looking for it in the wrong location in the
image. Once YARF has updated its estimate of road location and curvature, repredictions
are made of feature locations for search windows where there were tracker failures in the
current image. A failure is classified as a misprediction if the updated prediction of feature
location doesn't fall within the original search window. By explaining these tracker failures,
they can also be eliminated from further consideration.

Isolated tracker failures can occur due to badly worn or indistinct features or occlusion of
the feature by leaves or snow or reflections off a puddle of water over the feature. YARF
looks for support from multiple tracker failures in order to identify regions where a feature
is absent. The local map stores the tracker detections and failures for each feature as a list
sorted by y value in a vehicle-centered coordinate system. This list of tracker results is
scanned, and runs of tracker successes and failures are extracted, creating a list of feature
segments and gaps. Failures classified in previous steps as caused by image saturation or
search window misprediction are ignored during gap extraction.

Sections of the feature between the last detected point in a feature segment and the first
failure in a gap are labeled as unknown intervals. So are the sections between the final
failure of a gap and the first detection in a feature segment. These unknown intervals are
explicitly represented due to the possibility that a feature may not be visible as the vehicle
approaches an intersection because of limitations on camera field of view. As a result,
assuming that the feature was present could cause a failure to hypothesize that the vehicle
was approaching the intersection. This process of segmenting the feature data in feature
segments, gaps, and unknown intervals is shown in Figure 36.

F U G U U U

o detected feature point 0 nondetected feature point

Interval types: F(eature), G(ap), and U(nknown).

Figure 36: Extraction of feature intervals from raw tracker data points
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Gaps with at least five tracker failures and spanning at least two meters are considered as
well supported by the data, and are examined along with the unknown feature sections in the
final stage of intersection hypothesis generation. Figure 37 shows an example of such a gap.
The image on the left shows a section of road with a gap in the double yellow line. The
overhead view on the right shows the local map generated by YARF during a run along this
section of the road. The yellow-hue tracker failures in the gap are marked by asterisks, and
the run of failures corresponding to the gap in the double yellow line is marked by brackets.

gap

t.me 54

Figure 37: Road scene with a gap in the double yellow line (top left); processed
image showing tracker failures and extracted gap (bottom left); and view of local
map from a Navlab run showing the failures (marked by asterisks) and extracted

gap (bounded by brackets) (right)
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5.3.4 Hypothesizing the end of the current road segment

The previous stage of processing identified possible gaps in the individual features being
tracked. The next step combines the gap information from all the features to determine if the
end of the current road segment should be hypothesized. In order to do this, YARF examines
the map to determine which features of the current road segment are expected to disappear
at the next intersection. The interval information for those features is combined through a
voting scheme to check if the end of the road segment appears to be approaching.

The voting scheme partitions the y values in the local map into bins with fairly close spacing
to achieve good localization of the end of segment. Each bin has a count indicating the
number of features which had a gap at the y value corresponding to the bin, and how many
features had an unknown interval at that y value. YARF scans the intervals of the features
which are expected to disappear at the end of the current stripe. Gap and unknown intervals
vote for the bins they include. If the sum of the gap and unknown votes in a bin is equal to
the number of features voting, then that bin is marked as part of a possible end-of-segment
hypothesis. Runs of bins which are marked as possible end-of-segment hypotheses are
extracted. The y value of the start of the longest run is returned as the hypothesized end of
the road segment (see Figure 38).

known unknown gap feature A

known unknown gap feature B

VOTES

gap 0 0 0 0 0 0 0 0 0 1 1 2 2 2

unk. 0 0 0 0 0 1 1 2 1 1 0 0

end-of-segment hypothesis

Figure 38: Interval voting for end-of-segment hypotheses

An example of this process on a real road is shown in Figure 39. YARF is tracking the
double yellow line on the left of the lane and the solid white line on the right of the lane. The
white dots running down the middle of the image show YARF's estimate of the center of the
lane. The map indicates that both the features being tracked end at the next intersection. The
trackers failed to find the features in the top three windows for both features. These failures
generate gap intervals in the descriptions of the individual features. The voting scheme
detects the joint absence of the two features, and here has marked the hypothesized end of
road segment with a horizontal white line in the image.
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Figure 39: Example of end of road segment detection

5.4 Verification of end of stripe hypotheses

Once YARF has an estimate of the distance to the end of the current road segment. it can
then combine that information with the local intersection geometry stored in the map to
predict the location of the next segment to follow. As can be seen in Figure 39. intersections
of city streets generally cover too much area to be seen in the field of view of a single
camera. YARF currently uses a second fixed camera to provide iditional coverage. and is
therefore limited at the moment to making turns to one side. Adding additional fixed
cameras to cover more area or use of an aimable camera would permit general turning.
YARF applies 10 trackers at one meter intervals along the predicted location of the next road
segment. If they succeed in finding the new road segment, then YARF begins to track the
next segment and plan a path through the intersection. If verification fails to see the
expected next segment, then the system assumes that the end of segment hypothesis was a
false alarm and attempts to continue tracking the current segment.

Figure 40 shows an example of intersection detection and verification performed at an
intersection near the Carnegie Mellon campus. The overhead view shows the vehicle and
current road segment in the lower left, with the road ending at the estimated start of the
intersection. The asterisks extending past the end of the center line of the current road
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segment are the tracker failures which triggered the intersection hypothesis. In the upper
right are the points detected along the center line of the intersecting road, with the road
features for the next segment drawn in.

tracker failures which
triggered the intersection
hypothesis

confirming data points
detected at the predicted
location of the intersecting
road

Figure 40: Intersection verification

5.5 Path planning for lane changes and intersection navigation

While YARF is tracking the center of a lane it uses a pure-pursuit routine built into the
controllers of the NAVLAB I and NAVLAB 1I vehicles. Pure-pursuit is described in [561.
YARF uses a different path planning strategy to perform lane changes and navigate through
intersections. Given the vehicle location and orientation at the start of the maneuver, and the
desired vehicle location and orientation at the end of the maneuver, YARF generates a path
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using a routine from the path planner developed by Stentz for his thesis [47]. This routine
generates a path that consists of a turn of minimum radius, followed by a linear path
segment, followed by a second turn of minimum radius. If there is no feasible path from the
start point to the end point, the model of the destination lane shape is used to select a
destination point 0.5 meters further along the destination lane. The path planner is then
invoked again to see if there is now a feasible path. This process of moving the destination
further out and testing for a feasible path continues until one is found. YARF then generates
a set of waypoints which are sent to a path tracker. The waypoints are regenerated in each
image cycle in order to accommodate errors in the location of the destination lane due to
deviations of the terrain from the flat earth model.

Figure 41 shows an example of the path generated to perform a lane change in a simulated
vehicle run. Figure 42 shows an example of the path generated to turn left through an
intersection in a simulated run. This path planning method does not consider obstacles or
traffic control signs and signals, and would need to be modified appropriately in order to use
it in closed-loop runs on city streets. Live intersection detection and verification runs have
been performed in open-loop for safety reasons.

5.6 Directions for future work

While gap extraction and intersection hypothesizing have been tested in many live runs,
only a small number of live experiments have been performed to test the intersection
verification methods. Additional experimental work is needed to test the robustness of the
approach used.

Currently gaps in broken lines are not treated any differently than gaps in solid lines. The
system should use the additional context provided by the knowledge that a line is broken
rather than solid to help avoid possible false alarms due to spurious gaps in other features.

In general, the gap extraction process is primitive. It does not detect and eliminate failures
due to transient events such as passing cars. While requiring multiple failure support for
gaps eliminates most problems due to false failures, false feature detections can also pose a
problem, although a much more rare one. An isolated false detection will affect the estimate
of the end of the current stripe, and thus will also affect the prediction of the location of the
new road segment. This may result in an incorrect failure to recognize an intersection. An
optimization approach combining the failure information from all features would be
superior.

The local map stores data points sorted by y value in the current camera-based ground
frame. As a result, the implementation of the interval voting parameterizes the bins it uses
by distance in front of the camera. If the y axis of the local map is not parallel to the lane
tangent at the intersection then different features will end at different distances in front of
the vehicle. This happens due to camera pan, road curvature, or detection of the intersection
while the vehicle is in the process of changing lanes. The result is error in the system's
estimate of the location of the end of the road segment. It would be better to parameterize
the bins by arc length along the spine of the road segment and correct the feature interval
endpoints accordingly.
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Figure 41: Path planning for a lane change

The techniques described allow YARF to handle changes in lane structure and intersections
which are predicted in the road map used by the system. Situations may occur in which the
road features change in ways which are not predicted by the map. This could be due to
construction, or widening of the road, or changes in the marked lane structure since the time
the map was constructed. Currently YARF returns control to the human safety driver if all
the features being tracked vanish. A fast implementation of the SHIVA algorithm described
in Chapter 6 could be used to test the hypothesis that the map's model of the current segment
is not correct and to generate an updated segment model.

Similarly, the need for the geometry of the intersections in the map is also limiting. While
computerized driver's aides for route planning can provide information about the number of
roads meeting at an intersection and their rough relative orientations, they are unlikely to
have detailed knowledge of the relative location of lane markings on the roads. Work is

S" " " ' II I0



page 69

0
0

00

01

, •.

Figure 42: Path planning to turn through an intersection

needed in the domain of automatically extracting the branching roads at an intersection.
This will involve active vision to move a camera to cover the full area of typical city
intersections.

In the longer term, the flexibility of the system could be extended by the addition of other
types of landmarks into the system. A road segment might have a distinctive sign on the side
of the road shortly before the next intersection. Detection of the sign could be used to avoid
early false intersection hypotheses. This leads into all of the issues of feature and sensol
selection raised in [4]. Such extensions are necessary to perform navigation given the kiný
of models provided in typical directions generated by humans. as was pointed out in Sectior

5.1.
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6 Initial Detection of Road Features: the SHIVA
Algorithm

6.1 Road model initialization

Given an initial estimate of vehicle location and road curvature, the YARF system is able to
follow a road segment which has a constant lane structure. Constraints provided by the
system's model of road geometry and appearance enable it to respond to expected changes
in lane structure and the approach of intersections. The methods which YARF uses to
perform these tasks have been addressed in the preceding chapters. This chapter discusses
the problem of performing the initial location of the road and recovering from unexpected
changes in the lane structure.

Early versions of YARF required operator intervention to derive their initial estimate of the
road location. This could be done in two ways. In the first, the user specified a feature from
a preexisting road model and used a cursor to select three points along the left edge of that
feature. In the second, the user selected points on the left and right edge of the lane the
vehicle was in, resulting in construction of a lane model and the initial estimate of road
position. Both are clumsy solutions from the perspective of automating the road following
task. They require use of a cursor to pick points on the road, an awkward method of
initialization compared to the convenience of pressing the start button on a cruise control. A
more desirable solution is for the system to extract the road structure in an initial image and
either match it to a preexisting feature cross section model, or build the model from scratch.

Similarly, in cases where YARF is unable to locate the expected road features the system has
no other choice than to stop sending commands to the vehicle controller, inform the user that
the road has been lost, and exit. Again, a more desirable solution is for the system to
examine the current image and extract a model of the visible road structure in order to
recover and update its model of the road. The ability to extract the road lane structure based
on image data is also an important step towards the level of autonomy needed for integration
of road following with other driver's aids. Systems such as Travelpilot [7] will provide maps
of the road network which give roughly accurate geometry at intersections, but are unlikely
to include details about lane structure and do not give exact position data. This will require
road following systems to extract the local lane structure for themselves.

The algorithm which does this should extract as much of the lane s "ucture of the road as
possible rather than simply detecting pavement edges or boundaries of the current lane. It
should use an appropriate generic road model rather than require training by the user. The
SHIVA algorithm (Sobel/Hough Identification of VAnishing points) has been developed to
meet these requirements. The domain model used considers roads to be composed of
features with constant separation from each other. Within a short horizontal band of the
image the road is approximately straight. The features which compose it are approximately
linear and parallel on the ground. As a result, the perspective projection of the features into
the image plane should result in their meeting at a shared vanishing point on the horizon.
Sobel edge detection is used to extract edge points in the image, and Hough transform
techniques are used to determine the road vanishing point and filter out spurious edges.
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SHIVA embodies the same philosophy used in the basic lane following loop: use model
constraints to filter the results of noisy segmentation techniques It embodies this philosophy
in a bottom-up manner rather than in a top-down manner.

6.2 Related work

SCARF [91 uses a Hough transform to filter the results of a noisy color classification. Road
and nonroad color classes are modeled by multivariate Gaussian clusters in RGB space.
Each pixel is classified as either road or nonroad. Each road pixel votes in a Hough space for
every road it could lie on. Each nonroad pixel votes against every road it could lie on. Even
though the color classification used is not perfect, the global voting results in robust location
of the road. Similarly, in the UNSCARF system [9] regions are found by an unsupervised
color classification segmentation. A search is then done to locate the set of regions most
consistent with a given road model. Both these systems locate only the road surface,
ignoring any internal markings such as lane boundaries.

Polk and Jain [39], extending earlier work by Liou and Jain [331, developed an algorithm
which is boundary based rather than region based. In the case of a straight road the road
features have parallel boundaries which project into the image as lines meeting at a common
vanishing point. In the case of curved roads this is true as a local approximation, i.e. within
some range of rows the feature boundaries are close to linear and converge at a shared
vanishing point. Their algorithm uses the Sobel edge detector to find boundary points in the
image. They look only for the left and right edges of the current lane rather than trying to
extract all the visible road features. They also do not attempt to classify the features by type.

The MARF system developed at the University of Maryland [57] has a bootstrap mode to
perform the initial location of the road edges and initialize a predict-verify feed-forward
mode. Sobel edge extraction is performed to locate high contrast points. A histogram of
pixel gradient direction weighted by the pixel gradient magnitudes is computed to find
dominant edge directions in the image. For each peak in the direction histogram, edge pixels
with a gradient direction close to the peak direction vote for a line intercept. Intercepts with
sufficient support are reported as features.

Suzuki, et al. [481 track the left and right lane markers of the current lane using an adaptive
thresholding scheme and Hough line detection. Several rows are sampled around the
previous location of the left and right lane markings, and the average and maximum pixel
value computed for each of these rows. Thresholds are set for the left and right markers
based on a weighted average of the average and maximum intensities for the sampled rows.
The pixels in the area around the location of the markers in the previous image are
thresholded to extract the points corresponding to the lane markers. A Hough transform is
used to compute the parameters of the lane edges.

6.3 Description of the SHIVA algorithm

The SHIVA algorithm improves on previous techniques in two ways. First, it extracts the
full visible lane structure of the road rather than just the pavement edges or the edges of the
lane the vehicle is in. Second, it applies the YARF feature trackers to attempt to identify the
type of each feature. The previous techniques described above identify road or lane
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geometry, but not the nature of the features. Identifying the left edge of the current lane as a
yellow line rather than a white line is important for making tactical level driving decisions.
The SHIVA algorithm involves the following stages of processing:

" Edge pixel extraction. This involves substages of

Preprocessing the color input image to produce a single band image to
use as input to the edge operator.

Applying the Sobel edge operator to the preprocessed image.

Eliminating nonmaxima and thresholding the Sobel gradient magnitudes.

"* Division of the image into a small number of horizontal sections. Within each
section SHIVA performs the following steps:

Each edge point votes for the lines it could lie on.

Peaks in the Hough accumulator array are located, corresponding to
linear features.

The linear features identified in the previous step vote for vanishing
points on the horizon. The vanishing point with the strongest support is
assumed to be the vanishing point of the road within that section. The
features voting for that vanishing point are assumed to be road features.

"* Connection of features across section boundaries.

"* Classification of extracted features using tracker responses and spatial constraints.

These stages are illustrated in Figure 43 and described in detail below.

6.3.1 Line parameterization for the SHIVA algorithm

SHIVA assumes that the horizon appears htrizontal in the image plane, although it need not
be in the camera's field of view. A linear feature in the image is parameterized by the
column at which the line it lies on intersects the horizon row and the angle it makes with the
horizon row. Figure 44 shows the relationship between the coordinates of a point lying on a
line in the image and the parameters defining that line. The relationship between the
coordinates of a point in the image and the parameters of a line passing through it is defined
by the equation tan (theta) = (r - horizon-row) / (c - vanishingcolumn ).

This parameterization was chosen for two reasons. First, it makes identifying linear features
which share a common vanishing point very easy. Second, using orientation rather than
slope as a parameter allows even partitioning of line orientations by equally spaced bins in
the parameter space.
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Stage 1: edge pixel extraction Stage 2: division of the image into horizontal
sections; edge pixels vote within each section
for linear features; features vote within each
section for shared vanishing points

pay ent edge

paye nt edge

yell w stripe

Stage 3: connection of features Stage 4: Classification and
across section boundaries matching of extracted features to

map model

Figure 43: Summary of stages in the SHIVA algorithm

6.3.2 Preprocessing and edge point extraction

The color image produced by the camera is subsampled to produce a 120 by 128 image from
the original 480 by 512 image. SHIVA allows the user to select from a number of options for
the color feature which is used in edge point extraction. Currently supported choices are:

intensity image (average of RGB);

raw red, green, or blue band;

normalized red, green, or blue band; or

(blue - red) image.
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Figure 44: Relationship between coordinates of a point and
the parameters of a line passing through the point.

Experiments to date suggest that the raw green band works well, giving good contrast
between pavement and stripes as well as pavement and nonpavement.

Any segmentation technique could be used which returned boundary points in the image
with an estimate of the boundary orientation at each point. The Sobel edge operator
(described in [2]) is used due to its speed and simplicity. It computes estimates of the x and y
gradients in the image (gx and gy) by cross correlation of each 3 by 3 window in the image
with the masks shown in Figure 45. The gradient magnitude at each pixel w0.0 is computed

as magnitude = ýgx 2 + gy 2 . The gradient orientation is equal to atan (gy/gx) . The edge

orientation at the pixel is computed as theta = 1.57 - atan (gy/gx) After theta is
corrected to lie between 0 and 2g, if theta > 7 then theta = theta - g. This makes the
theta value consistent with the way in which line orientation is parameterized and ignores
the difference of 7c in edge orientation between lines with the same orientation and opposite
contrast.

W- j - I = gx [c , w, .o o =
wl-I W1.0 w.: [--1 0 WL.-I WL0O w L .1 -2

Figure 45: Masks used to compute the x and y gradients for the Sobel
edge detector
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The edges are thinned by a very simple nonmaxima suppression technique which looks at
the orientation of the gradient of a pixel and the magnitudes of the gradients of its 8-
neighbors. Gradient orientations are partitioned into the four areas A, B, C, and D shown in
Figure 46. The central pixel in a 3 by 3 neighborhood is compared to its neighbors along
either the center row, column, or diagonals, depending on orientation. If it is not greater than
or equal to the magnitude of both of the neighbor pixels along the gradient direction, then
the gradient magnitude for that pixel is set to zero.

A / \ A

Figure 46: Partitioning of gradient orientations for
nonmaxima suppression

Next the gradient magnitude image is thresholded to extract potential edge pixels. There are
two methods provided for specifying the gradient threshold. The first is a fixed gradient
magnitude. A value of 15 intensity levels (where the image intensity varies from 0 to 255)
works well on the test images examined to date. The second method is percentile based. The
user specifies a percentile cutoff on the gradient magnitude, and histogramming is used to
determine the appropriate threshold.

6.3.3 Voting for line segments and shared vanishing points

The candidate edge points now vote for possible lines in the line parameter space. The
image is partitioned into a small number of horizontal sections in order to accommodate the
change in road vanishing point due to curvature in the road. Edge points in each section vote
separately for linear segments and the overall vanishing point for that section.

While bins are provided in the parameter space for line segments whose vanishing points lie
off the image by some fraction of the image width, in the case of roads with high curvature
the road features will have vanishing points far outside the image. As a result, the top of the
image is cropped. Also, only one lane or road edge is typically visible near the bottom of the
image. Since multiple road features are not visible in this area to vote for a shared vanishing
point, the bottom of tae image is also cropped. The limits of this cropping depend on the
camera field of view and tilt angle.
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Each potential edge point located by the Sobel operator votes for bins in the parameter
space. The bins correspond to lines through that point and a particular choice of vanishing
column. The votes are not weighed by the edge gradient magnitude, as features differ in
their relative contrast, and shadows may have higher contrast than the features. Edge pixels
only vote for lines whose orientation is within a specified tolerance of the estimate of
gradient orientation for that pixel. This reduces the effect of noise and shadow edge pixels.
In addition, the pixel votes are weighted by the difference between the Sobel estimate of the
edge orientation and the bin's line orientation according to the formula

min(angle diff, ic - angle diff)
vote = --/2, where anglejiff I edge-angle + line-angleI. This

weighting reduces the influence of spurious edge points.

Candidate line segments now have to be extracted by peak detection in the accumulator
array. In order to avoid underweighting segments which are clipped by the boundaries of the
image,- the votes for each bin are normalized by the visible length of the segment
corresponding to that set of parameters. Bins representing very short segments (length < 2
pixels) have their votes set to zero, as this normalization would otherwise overweight such
very short segments.

The normalized accumulator space is now thresholded. The bins which remain represent
candidate segments which have edge point support for more than some fraction of their
visible length. The votes for all orientations are summed for each possible vanishing
column. The vanishing column which has the most total support is judged to be the road
vanishing column for the current section of the image, and the above threshold bins in the
accumulator array which correspond to lines with that vanishing column are the candidate
road features for the current section of the image. This process is repeated for each of the
horizontal sections of the image separately.

6.3.4 Connecting features across section boundaries

At this point in the SHIVA algorithm the features are still represented implicitly by the
accumulator arrays for the horizontal sections. The next stage of processing converts that
information into a symbolic description of the features detected by the Hough voting
procedure. Each feature is represented by a sequence of (row, col) pairs which represent the
intersection of the feature with the top row of each section.

Knowing the vanishing point corresponding to each horizontal section of the image permits
the extrapolation of the location of a feature from one section through the other sections.
Given the vanishing column vc[N] and orientation theta[N] of a feature in section N, and
given the vanishing column in section N+I is vc[N+11, the orientation of the feature in

(c[N+Il]-vc[N!)
section N+l is constrained to be theta[N+ 1] = atan( (c[N+ 11 -vc[N!) tan (theta [N]))(c[N+ 11 -vc(N+ 11)

(see Figure 47). Similarly, we can constrain the orientation of section N- 1. In this way, given
a bin corresponding to a feature in one section, the bins corresponding to the feature in the
other sections can be determined.

All bins in the accumulator arrays are initially marked as unused by any symbolic feature.
The accumulator arrays for the image sections are scanned from the top section downward.
When a bin is found which corresponds to a feature voting for the vanishing point in that
section, and which has not been marked as used already, a new symbolic feature description
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vc[N] vc[N+ 1]

theta[N] thetaljN+ 1]

(r[N], c[N])
section N

(r[N+1], c[N+1])

section N+ I

Figure 47: Geometry relating the parameters of a feature which extends
across a section boundary

is generated. The sequence of vanishing points is used to determine the location of that
feature lower in the image, and bins which correspond to the feature in lower sections are
marked as used. After the accumulator has been scanned and all the features located, the
positions of the features in sections where they were not located are determined using the
constraints provided by the sequence of vanishing points.

6.3.5 Classifying features using the trackers

At this stage in processing SHIVA has extracted the geometric description of the features,
but has not associated any semantics with them. The tracker algorithms used in the main
road following loop are used to classify the features into yellow and white painted stripes,
road shoulders, and "other" (shadow edges, etc.). Each feature has the yellow hue and
oriented bar trackers applied at five points along the visible length of the feature in each of
the horizontal image partitions. This creates four score values. The first is the fraction of the
oriented bar windows which returned a positive response. The second is the fraction of the
yellow hue windows which detected yellow stripe pixels to the right of the feature. This
score is called left-yellow because a high value suggests that the feature is the left edge of a
yellow stripe. The third is the fraction of the yellow hue windows which detected yellow
stripe pixels to the left of the feature. This score is called right-yellow because a high value
suggests that the feature is the right edge of a yellow stripe. The fourth is total-yellow, the
sum of left-yellow and right-yellow.

One simple spatial constraint is used in the feature classification: whether the feature
intersects the bottom of the image to the left or right of the center column. The vehicle
cannot be to the left of any yellow markings on the road, and the vehicle cannot be to the
right of the right shoulder of the road. This constraint is combined with the four score values
described above in a decision tree, which is shown in Figure 48. Currently SHIVA does not
use any higher level constraints involving multiple features. Also, the decision tree does not
include broken white stripes. These extensions have been left for future work.



page 78

total-yellow > 0.7?

bar operator response > 0.75? bar operator response > 0. 19?

no no yes

totalyellow > 0. 19? white stripe

nO yes

unknown

left-yellow > right-yellow?

"no7 \yes

intersects image bottom
right of center? intersects image bottom

no s right of center?

l no es •intersects image bottom
right of center?

left shoulder unknown

right shoulder 

nno

left-.yellow >= 0.2? yes

Sunknown 
leftyellow > right-yellow?

bar operator
response >= 0. 1? bar operator response > 0.7? no yes

no yes A,
left edge no yes

yellow stripe right edge left edgeyellow stripe yellow stripe
left shoulder right shoulder white stripe

Figure 48: Decision tree used to classify features in SHIVA
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6.4 Results

Figure 49 shows two examples of applying the SHIVA algorithm to images with strong
shadow edges. The original images are shown on the left, the processed images on the right.
The top and bottom portion of the processed images are the grey scale values in the areas
cropped by the algorithm. The middle portions of the processed images show the detected
edge pixels in light grey and the extracted features in white. The numbers next to the
extracted features are the identifiers used by SHIVA to refer to the features. In both images
the white stripe on the right passes through noisy shadow edges, but the shared vanishing
point constraint allows SHIVA "o successfully locate the feature position. Edge tracking
algorithms would become confused by the textured shadow edges, which would offer
multiple possible continuations.

. V' -

Figure 49: SHIVA examples with features going through
textured shadow edges
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Figure 50 shows the result of applying SHIVA to images in which the road curves. In the top
example, SHIVA locates both sides of the double yellow line, the white stripe on the right
edge of the lane, and the shoulder edge on the right. In the bottom example, SHIVA locates
one edge of the double yellow line, the white stripe on the right side of the lane, and the
bottom of the guard rail to the right of the road. Notice that the feature locations are not
totally accurate due to the discrepancy between the features and their linear approximations,
but are well within the tolerance necessary to use them to make initial predictions for the
feature trackers.

f!~

Figure 50: SHIVA examples with curved roads

The images in the preceding examples were scenes of a road with solid markings. Figure 51
shows the results produced by SHIVA for input images containing broken painted stripes.
The top pair of images show the input image and SHIVA result for a scene taken on a local
divided highway. SHIVA successfully locates the solid white stripe on the right side of the
lane (feature 3), the broken white stripe on the left side of the lane (feature 5), the bottom
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edge of the concrete barrier on the left side of the road (feature 4), and three of the edges of
the concrete barrier on the right side of the road (features 0, 1, and 2). The bottom images
show the SHIVA result for another location on the same road.

Figure 52 shows the results of the SHIVA algorithm on three images taken on a multilane
road near campus. The right edge of the vehicle's lane is a broken white stripe. The shared
vanishing point constraint allows the extrapolation of the location of the lane edge in the
section of the image where it is missing.

Figure 51: SHIVA examples, road images with a broken white stripe
and concrete barrier

The above results demonstrate the ability of SHIVA to extract the geometric information
about road features in the image. A separate experiment was performed to test the feature
classification decision tree described above, The decision tree for feature classification was
derived by examining the feature scores in a set of 17 images. The resulting hand-
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Figure 52: SHIVA~ examples. street with a broken white stripe
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constructed tree was then tested on a. set of 30 additional images. All 47 images came from a
data set taken on Schenley Drive, a road near campus. Schenley Drive is a two lane road,
with a double yellow stripe down the center and white stripes marking the outer lane edges.
Portions of the road have a guardrail or fence running alongside. SHIVA found 156 features
in the 30 test images, 125 of which were correctly classified. Of the 31 errors, 16 were false
features due to shadow edges and edges from a fence and guardrail which run along sections
of the road. Seven were due to the oriented bar tracker not being able to detect the white
stripe on the left edge of the left lane. Due to the limited camera field of view, that stripe was
visible only in the distance. As a result, that stripe appeared very narrow in the images. The
confusion matrix for the results is shown in Figure 53. While these results are based on a
relatively small data set, they confirm the basic feasibility of using the YARF trackers to
classify features detected by SHIVA.

actual

yellow stripe shoulder white stripe

classification left right left right
edge edge left right lane lane other

left edge, yellow stripe 23 0 0 0 0 0 0

right edge, yellow stripe 0 25 0 0 0 0 0

left shoulder 0 1 16 0 0 1

right shoulder 0 0 0 21. 0 1 11

white stripe 0 0 0 1 1 27 4

unknown 0 0 2 1 7 1 12

Figure 53: Confusion matrix for SHIVA feature classification
experiment

6.5 Evaluation of SHIVA

6.5.1 Use of the Sobel edge operator to detect feature boundaries

The SHIVA algorithm uses the Sobel edge operator because it is fast, and it provides an
estimate of edge orientation. The disadvantage of using the Sobel operator is the difficulty of
selecting a gradient threshold. The image on the right in Figure 50 is a good illustration of
this problem. The edges of the double yellow line have lower contrast than the strong
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shadow and texture edges on the shoulder of the road. As a consequence, a percentile based
thresholding scheme will miss the yellow stripe edges in such a situation. A fixed gradient
magnitude threshold appears to be the better choice.

The SHIVA algorithm is not dependent on the use of the Sobel operator to extract boundary
points, and other segmentation techniques could be substituted which were not as sensitive
to texture or contrast. The main requirements for the segmentation technique are that it run
in reasonable time and that it provide an estimate of boundary orientation. The first
requirement arises from the need for the initial road location to occur rapidly enough for use
in a system operating at traffic speeds. The second requirement arises from the need to
constrain the portion of the Hough accumulator which each boundary point votes for in
order to reduce the number of false peaks due to accidental alignments of noise edge points.

6.5.2 Handling road curvature by partitioning the image

SHIVA partitions the image in order to deal with the change in vanishing point caused by
curvature in the road. The approximation of the road features as linear within each image
partition allows the use of a two dimensional Hough accumulator array. This speeds up the
voting stage and simplifies peak detection. In the case of broken features, however, the
stripe may straddle a partition boundary so that there isn't sufficient support in either
section, resulting in a failure to detect the feature. An alternative would be a
parameterization of the road features which had the property that concentric arcs on the
ground plane were easy to detect given their projections into the image. One possible choice
has been identified, but not tested.

Placing the origin of the image coordinates at the center of the image, and placing the
camera level so that the horizon falls along the center row, simplifies the camera calibration
equations to row = cameraheight/ (y x rf) and column = x/ (y x cf), where
rf = pixel-height/focaljlength and cf = pixel width/focaljlength as defined in Section
4.2. Using the parabolic approximation to the road shape model as described in Chapter 4,

x = 0.5 x k x y2 + head x y + spine offset +feature.offset, the equation of the projection
of one of the road features into the image plane is

column -head + k x camera~height + (spine.offset +featuremoffset) x rf

column heigh + -fstx x row
cf + 2xrfxcfxrow cameraheight x cf

Thus, each feature in the image plane can be fit with a curve of the form
column = heading-term + curvatureterm /row + offsetterm x row. All the features
will have the same values for heading-term and curvature-term. Note that this implements
the same model of road geometry as YARF, but in the image plane, with no need to
backproject onto the ground plane.
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6.5.3 Assumption of a flat ground plane

SHIVA assumes a single horizon row. If the terrain varies in slope, SHIVA may not be able
to correctly locate all the road features due to their not having a vanishing point on the
horizon row corresponding to the tangent plane at the vehicle location. The accumulator
array contains all the information about the linear features within each horizontal image
partition. One possibility would be to have pairs of lines in each section vote for their
vanishing point, and cluster the votes to identify the best horizon row and vanishing point
for that section. This would be similar to the "hill and dale" model of road geometry [36].

6.6 Conclusion

The SHIVA algorithm shows promise to provide a robust method for extracting and
identifying the features composing the road in an image. The specialized trackers used for
feature detection in the normal YARF predict-verify road tracking loop can be combined
with simple spatial constraints to classify the features as stripes of different colors and road
boundaries. Full integration of this algorithm with the YARF system would permit
autonomous initialization of the system's estimate of vehicle location and road curvature. It
would also permit recovery in cases where the road changed lane structure in a way not
predicted by its map of the road network. Ultimately, it could lead to techniques which
would allow the system to function without any prior knowledge of the lane structure of
roads in the system's map of the road network.
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7 Conclusion

This thesis describes YARF, a system for vision based road following. At the core of the
YARF system is a model of the road structure which includes information on feature
appearance and feature geometry. This model is central to every aspect of the system. It
simplifies image segmentation by constraining feature location, orientation, and appearance.
It generates the system of equations used to integrate individual measurements of feature
locations into a single estimate of the road curvature and location relative to the vehicle.
Finally, it creates expectations whose violation signals changes in road structure. YARF
exploits the model characteristics to make innovations in each of the areas mentioned above.

The predict-verify-update loop used in YARF assumes that the model of road structure and
appearance is provided by a map of the road network. For practical application it will be
necessary for a system to be able to automatically generate the road model from image data.
The SHIVA algorithm provides a mechanism for generating a road model by using
constraints from a weak domain model to filter a noisy segmentation.

7.1 Importance of the model

The central theme of this thesis is the use of model information to simplify and increase the
reliability of vision based road following. Three main areas were emphasized: segmentation,
estimation, and reaction to changes in road structure.

One of the innovations of YARF is the use of the road model to select from a set of
specialized segmentation techniques. Each type of feature is most reliably detected by
exploiting a robust cue specific to that class of feature. Section 3.5 presented experimental
results demonstrating the increased reliability achievable by using multiple trackers. In
addition, using model information about feature location to constrain the area examined for
a feature reduces the amount of computation required and the probability of false feature
detections.

In addition, using the model to focus attention on the expected feature locations reduces the
complexity of processing each image. The predict-verify-update loop used to track road
segments typically looks at 30,000 or so of the pixels in a 512 by 480 image, and takes
approximately half a second per image. SHIVA, which makes no assumptions about feature
location, looks at all 15,360 pixels in a 128 by 120 image, and takes approximately 10
seconds per image.

The second area of emphasis was estimation. No segmentation technique is perfect, and any
vision based navigation system will therefore find itself in situations where there are
contaminants in the data. YARF demonstrates that the coherence constraints imposed by the
scene model (in tLiis case, a generalized stripe road model) can be combined with the least
median of squares robust estimation technique to avoid the influence of such contaminants
on the model fit. Without the coherence imposed by the model, this would not be possible.

The third area of emphasis was the use of model information to provide expectations about
the manner in which the road will change appearance. By providing information about how
all the fcatures behave, brief gaps in individual feature, caused by passing cars or other
transient problems can be ignored. This reduces the processing time spent on testing
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incorrect hypotheses. By providing information about the road network which the system
cannot currently extract autonomously, the map model of the road network enables YARF to
execute more sophisticated missions than it could without the map.

7.2 Contributions

The YARF system makes a number of contributions to the field of vision based road
following research. The first is the generalized stripe formalism for describing roads. This is
the first system of road representation to incorporate information about road feature type and
appearance into the road model. Previous systems included only geometric information
about the road. In addition, the generic differential definition of a generalized stripe provides
a common language for describing representations of road geometry.

YARF simplifies the imag8 segmentation aspect of the navigation task by providing an
architecture for combining model information about feature appearance with a library of
specialized segmentation techniques. The interface between the feature trackers and the rest
of the system is object oriented, identifying instances of feature trackers by their type and an
index number. This hides knowledge of any state information used by the individual
algorithms from the rest of the system, allowing easy expansion of the set of feature
trackers. All of the trackers described in Chapter 3 were developed after the interface had
been designed and implemented, and were easily integrated into the system.

YARF performs more robustly in the presence of contaminating data observations than
existing systems based on a least squares approach. The use of the LMS robust estimation
algorithm in combination with the geometric constraints provided by the road model allows
the correct estimation of road curvature and vehicle location in situations where a least
squares based approach would fail due to the presence of outliers in the data. Experiments
using LMS for closed-loop runs in situations without outliers show that it performs well
despite its lower efficiency compared to least squares. This opens up new lines of research
into modifications to the LMS algorithm to handle imbalance in feature representation in the
data set, and combinations of LMS with filtering.

YARF explicitly checks for and recognizes intersections and changes in lane structure. In
previous systems, the disappearance of a lane edge would be ignored unless the system
appeared to have totally lost track of the road. This could result in inappropriate behavior.
YARF recognizes that such feature disappearances may signal the approach of an
intersection or a change in lane structure, and uses map information to verify such changes.

Finally, SHIVA provides a robust algorithm for extracting the full lane structure visible in a
single road image. It extends previous techniques by applying the YARF feature trackers to
identify feature type as well as feature geometry. Such a technique is necessary in order to
react to unexpected changes in road lane structure and initialize the system's estimate of
road location and shape.

7.3 Comparison with other approaches

There are a variety of other vision based road following systems described in the literature.
Each chapter has discussed relevant systems as they related to the functional subtask
covered in that chapter: models of road geometry in Chapter 2, segmentation methods in
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Chapter 3, model fitting methods in Chapter 4, map based navigation in Chapter 5, and road
detection using a weak domain model in Chapter 6. It is useful, however, to also compare
different approaches with respect to the issue of system architecture and integration. Vision
based road following is not an end in itself, but a capability which can be used to help
perform a variety of tasks. In order to evaluate the merits of a road following system it is
necessary to consider the larger tactical navigation task which that system is intended to
help perform. There are many such tasks: to stay in the current lane and maintain a fixed
distance from the vehicle ahead; to navigate along a poorly defined, unmarked dirt road at a
mine site while avoiding stationary obstacles; to drive in traffic through a network of city
streets; and so on.

The YARF system is designed to operate in road environments where there are marked
lanes. In the case of unmarked and unpaved roads, there are other approaches which offer
greater robustness. The reason for this is the reliance of YARF on feature detection in small
local search windows:'Road edges are often poorly defined, and systems which exploit more
global features such as SCARF [10] and ALVINN [40] can perform more reliably on such
roads.

Within the domain of marked roads, the YARF system offers a number of advantages over
other model based systems such as VaMoRs [13] and VITA [17]. It provides an extendable
library of feature trackers applied in a model-driven manner; it incorporates robust
estimation to avoid the influence of outliers on model parameter estimation; and it
incorporates techniques for detecting and reacting to changes in road structure. More
detailed quantitative comparisons with these systems are difficult, however. Both VaMoRs
and VITA have driven longer continuous autonomous runs than YARF. Implementing
YARF on a general purpose workstation provided the advantage of a convenient debugging
and testing environment, but at the price of speed. YARF only runs at 2-4 Hz, making it
impossible to try extended highway test runs.

The central idea in YARF is the importance of explicit models. At the other exteme is the
ALVINN neural net road follower. The ALVINN system learns to drive along a given road
after approximately five minutes of observing camera images and the steering behavior of a
human driver. The network takes an image of the road as input, and produces a steering
direction as output. The adaptive learning capability of the neural net architecture permits
ALVINN to drive faster and on a broader range of road environments than YARF, but the
implicit nature of the network's road representation generates two disadvantages for the
ALVINN approach compared to YARF.

The first disadvantage relates to the need for human training of the ALVINN networks.
Currently ALVINN needs a separate network for each different road it drives on. While the
current YARF map includes the feature cross section for each road, the SHIVA algorithm
provides a potential technique for extracting lane structure without human training or
intervention. It is an open question whether a large class of roads can be followed using a
relatively small closed set of neural networks. Research is under way to extend ALVINN by
combining multiple nets in a manner which it is hoped will lead to generalization to
previously unseen roads [221, but this is still work in progress.

The other disadvantage relates to the difficulty of extracting symbolic information about the
tactical situation from an ALVINN network. ALVINN generates behaviors directly from its
visual input, without constructing any explicit representation of the environment. As a
result, symbolic information has to be inferred from the behavior chosen by the network. An
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example of this is given in [51], where assumptions are made about ALVINN's driving
behavior in order to infer the location of the road center. The representation of the road
environment used in YARF is easily extendable to include the features used by the
ULYSSES model of the tactical driving task [42]. ULYSSES provides a detailed, principled
analysis of the tactical driving task for the case of urban driving with traffic. This model of
the task can be discussed in terms of completeness and correctness. In order to use ALVINN
to perform the same tactical task, it will be necessary to show either that the symbolic
features used by a ULYSSES-like architecture can be inferred from the behavior of the
neural networks in the system, or that the tactical task can be modeled equally well in a non-
symbolic system.

7.4 Directions for future work.

In addition to the contributions described above, YARF provides an open ended framework
for integrating different types of algorithms and models into an evolving nlavigation system
with increasing competence. Such extensions can lie along a number of different dimensions
of performance, ranging from application to additional task domains, inclusion of additional
classes of features within the road following domain, addition of learning capabilities to the
system, and so on. This section outlines a number of the possible directions for extension.

While YARF makes a number of contributions to the reliability and competence of visual
tracking of the road and its lane structure, the perceptual and path planning capabilities it
provides do not address the full needs of the driving task. Further progress towards
providing the perceptual support needed for the tactical level of the driving task will require
incorporating feature trackers to locate additional types of objects. The introduction
discussed the model of tactical driving constructed by Reece, and the set of underlying
perceptual routines assumed by his ULYSSES system. Implementing the perceptual routines
whose competence is not already provided by YARF would require routines to locate the
following classes of objects: markings on the pavement such as turn arrows and crosswalks;
various types of road signs, in particular speed limit, stop, and yield signs; traffic lights; and
vehicles on the road.

The existing YARF feature trackers look in small rectangular or parallelogram shaped
windows in order to make a point measurement of a feature location at a particular
lookahead distance. Features such as traffic signs are extended -objects which would require
larger search windows with more arbitrary shapes. The use of standard colors for objects
such as stop and yield signs may permit the use of hue-based trackers built using the same
type of pixel classification as the yellow stripe tracker, but will require region extraction and
shape analysis to perform reliable detection. In addition, recognizing some types of signs
may require limited character recognition capabilities.

The map of the road network used to specify missions for YARF is currently very limited.
Only two types of landmarks are represented: intersections and changes in lane structure. A
fixed set of control annotations are included. The ability to incorporate additional types of
landmarks in the map is important for two reasons. The first is that it permits a richer set of
mission specifications. Thus, another direction for extending YARF is the construction of a
general annotated map facility designed to support missions specified by a mixture of
qualitative and quantitative information about the route and the landmarks to be
encountered.
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The second reason that allowing a richer set of landmarks is important is that a system can
take advantage of distinctive landmarks recognized during one run to reduce the perception
and planning cost of later retraverses of the same route. An example of this would be adding
the information that a particular intersection was a four-way stop into the map after the
system encounters the intersection for the first time. Subsequent runs which encountered the
same intersection would not have to expend resources checking for the traffic control signs.
Incorporating this type of learning from experience will require the integration of algorithms
which can judge the utility of adding a given landmark into the map.

Integration with a map-based strategic driving aid such as the TravelpilotTM system would
allow YARF to take advantage of the existing map database developed for such systems. It
would also demonstrate the potential to produce integrated autonomous systems combining
vision based road following techniques with non-autonomous driver's aid technologies
already under development. Such an extension would require fast algorithms to detect lane
structure for roads branching out at intersections as well as for the -road the vehicle is on.
Extensions to SHIVA combined with a fast parallel implementation would be one possible
solution to this problem.

The current YARF map indicates the specific changes in lane structure which will occur at
the transition between stripes along the mission route, explicitly stating that road X will
change from two lanes to three lanes. An alternative would be to use feature gap analysis to
detect generic classes of changes in road structure without a prior map. Examples would be
detecting the addition of turn lanes near intersections or the approach of exit ramps based on
shifts in lane markings.

A longer term agenda involves performing the driving task based on measurements in the
image plane without any explicit reconstruction of scene geometry. This would reduce the
number of system parameters whose values need to be measured. The SHIVA algorithm
provides an example of this. The only camera calibration parameter needed by SHIVA is the
location of the horizon row, compared to the four parameters which need to be measured for
the camera model used in constructing the local map. Section 6.5.2 described a possible
implementation of the YARF model of road shape in image coordinates. Pure pursuit
steering control can be performed based on road location in the image. A number of
algorithms have been developed which use image flow to determine time to collision
without computing object range. Such an extension would require that the tactical
constraints on vehicle behavior be expressible in terms of variable such as time to collision
rather than object range and speed. In addition, such a system woulu not be able to build a
local map incorporating information from multiple frames. This would result in a need for
more dense sampling of the features in each frame, and modifications to the gap analysis
algorithms for detecting stripe transitions. It would also require different algorithms for
locating branching roads at intersections.
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